
L7 F!K 2?

V AD-A223 153 l i
C H~

CECOM

CENTER FOR SOFTWARE ENGINEERING

ADVANCED SOFTWARE TECHNOLOGY

CLEARE)
FOR OPEN PUBLi;,.jTl

DEC2 o 199 12
DIRECTOR,1TE F r ' . ORMATION

AND SE(7!"' ," , (OA -PA)
DEPt.. ..:,'T C1 L,ENSE

Subject: Final Report - Real-Time Ada Problem
Study

CIN: C02 0921A 0005 00-..

• -24 MARCH 1989

90 06 'Y 07 '

(

PREFACE

The real-time technology program at the Center for Software
Engineering, CECOM, is based on recognized problems encountered in the
development of embedded real-time Ada systems. The first step in the
program was to define this set of root problems. The approach was to conduct
interviews with both program managers and system developers working on
Ada real-time applications for the Army and then to analyze, categorize, and
enter into an datahae results et of issues. >

This document includes the two technical reports that resulted from the
effort to define this set of problems. The authors were chosen because of their
proven expertise in real-time development with Ada. They could enrich the
results of the interview process with their own experience in this area.

The first report is entitled "Software Engineering Issues on Ada
Technology Insertion for Real-Time Embedded Systems". LabTek
Corporation, the author, had proven expertise in embedded system design
utilizing Motorola MC680XO- based processors.

The second report is entitledSoftware Enineering Problems Using Ada

in Computers Integral to Weapons Systems. Its author, Sonicraft, had
expertise in evaluating system requirements and in performing high-level
system design utilizing the Intel 80X86 family of processors. r.

Accession For
NTIS G7A&I
DTIC TAB

Unannr: d
Justificution

By

Distribut i on/

Availb i ity Codes

Avail 8;d/or

Dist~ Special

TABLE OF CONTENTS

Software Engineering Issues on Ada Technology Insertion for Real-Time
Embedded Systems

Executive Summary AO

Table of Contents .. Ai

Report .. A l - A57

Software Engineering Problems Using Ada in Computers Integral to Weapons

Systems

Table of Contents .. Bi

Report .. B I - B109

SOFTWARE ENGINEERING ISSUES ON Ada TECHNOLOGY

INSERTION FOR REAL-TIME EMBEDDED SYSTEMS

FINAL REPORT

PREPARED FOR:
U.S. Army HQ CECOM

Center for Software Engineering
Advanced Software Technology
Fort Monmouth, NJ 07703-5000

PREPARED BY:
LabTek Corporation 5

853 Beechwood Road
Orange, CT 06525

DATE:
30 September 1987

Ada Technology Issues

EXECUTIVE SUMMARY

This report is the result of a study to identify and classify the problems associated with the

current use of the Ada programming language, particularly in real-time embedded

applications. The term *Ada technology' which appears in the report title refers to

currently available Ada compilation systems, tools and associated methodologies. The

conclusions of the study indicate that some of the prominent problems are due to the

immaturity of the commercially available Ada compilation systems which includes the

runtime environments. It is believed that these compiler problems will be nearly eliminated

by thi compiler vendors within five years, provided that the demand for solutions to these

real-time problems is sustained. Other problems include the substantial resources needed

to develop Ada software and the lack of Ada debugging tools. In addition, the inexperience

with Ada imposes many management concerns. While trying to maintain cost and schedule

objectives, management must train its personnel and deal with the unknowns 3f the chosen

Ada compilation system.

Table of Contents

1. Overview .. 1
2. Approach 2

2.1 Interviews

2.1.1 Program Manager Interviews 2

2.1.2 Private Industry Inter ews 3

2.2 ARTEWG and SIGAda Meetings 3

2.3 Literature. 4.....
2.4 Criteria for Issue Definition_ 4

3. Ada Technology Issues In Real-Time Embedded Systems 4

3.1 Compilation Systems... 7

3.1.1 Runtime Environments. 7

3.1.1.1 Configurability 9

3.1.1.2 Execution Performance...n.c........*.. 10

3.1.1.3 Evaluation........._ 11

:3.1.1.5 Dynamic PrioriU 1

3.1.1.6 Parallel Processing.... -....... 15

3.1.1.7 Support of Low Level Operations.. 16

3.1.1.8 Task Rstart 17
3.1.1.9 Cyclic Scheduling............................... 18

3. 1.1.10 Floating Point Coprocessor Suppo 19

3.1.1.11 Distributed Procesng 20

3.1.1.12 Multl.level Security Support 21
3.1.1.13 Relabilit 21

A-i-

Table of Contents

3.1.2 Code Quality

3.1.3 Documentation ... 24

3.1.4 Validation 24

3.1-5 Proposed Ada Language Extensions 25

3.1.5.1 Fast Interrupts ..-... 26

3.1-5.2 Greater Control of the Task Control Block (TCB))... 26

3.1.5.3 Asynchronous Task Communications 27

3.1.6 Chapter 13 -....................... 27

3.2 Software Development Activities and Related Tools 28

3.2.1 Requirements Analysis 29

3.2.1.1 Rapid Prototyping 30

3.2.1.2 Requirements Tracing. ... 30

3.2.2 Configuration Management...........................-- o 31

3.2.3 Design 324

3.2.3.1 Flow Diagrams ==... 33

3.2.3.2 Program Design Language (PDL)..... o 33

3.2.4 Documentation.-. 34

3.2.5 Implementation...

3.2.6 Integration-. 35

3.2.6.1 Debuggws ----- 36

3.2.62 Simulation -..37

3.2.63 Autoumic Regression Ttn.......... 39

3.2.6.4 Correlation to Specified Test Verification Matri_ .. 39

3.2.6.5 Test Generation Assistance. 40

3.2.7 Maintenance. 41

A--

Table of Contents

3.3.1 Proposal Development 1

3.3.2 Resource Allocation ; 42

3.3.3 Reusable Software 3....... 43

3.3.4 Training 44

4. Issue Vs. Source Matrix 46

5. Sum m ary- -----....................... 50

6. Summary Of ..i 51

7. Glossay 54

8. Rferences. 56

A -ui-

Ada Technology Issues

1. Overview

The programming language Ada, was developed to reduce the life cycle development cost
of mission critical real-time embedded systems. Most of these systems are characterized by
long development times and long lives with continual changes and expansions in their
environment. The ability to evolve and grow is important. Development efforts are further
complicated by the high reliability required for these systems. Building reliable software is
a major issue when failures could result in loss of life and tremendous economic costs.
Deterministic behavior is an essential criteria of an embedded real-time system because a
random, non-repeatable failure may lead to a catastrophic life threatening situation. Here,
the stability of the target system is of utmost importance.

Typically, embedded systems software is developed on large minicomputers with a variety of
peripherals such as disk drives, printers, and a large number of interactive terminals. This
system is often referred to as the "host" computer. The host computer used for software
development is usually different from the embedded computer that will run the application
progrAms. The computer hardware and operating system on which the applicatin progra 9
executes is called the target system. The host's operating system, such as VMS or UNIX
supports the tools needed to create the application program. The tools include editors for
writing the projrams, compilers and asse rs for translating the modules into executable
code, and utilities for preparing the application for execution (among others).

There are a number of aspects of the Ada language that make it different from languages
that have been used to implement real-time systems. Perhaps the most significant
difference, from a real-time software point of view, is the interaction between the language
features and the execution time support for those features. The most obvious feature that
illustrates this point is the Ada task. Taskinq has always been used in real-time systems,
however it is normally provided by a separate exccutive that manages the tasks as separate
cooperating programs. In Ada, tasks are part of the language, and therefore every Ada
implementation must support tasking, and there is a high desree of integration between
language features and the tasking modeL. This precludes using a typical independently
developed executive to provide the tasking services. This ti ht coupling between the
language and the routines that are necessaty to support the ntime execution has a major
impact on the flexibility of Ada applications. Ani Ada runtime (often called runtime
support) is the set of procedures or functions required to support the code generated from a
compilation. It is this runtime that is now provided by compiler vendors that was previously
developed by application builders.

The use of Ada for real-time embedded systems is exposing a number of serious software
engineering issues. It is apparent from interviewing program managers, software managers,
software engineers, and apication engineers that many are encountering similar types of
problems when trying to apply the current commercially available Ada technology. The

2VMS is a trademark of Digital Equipment Corporation.

3UNDX is a trademark of AT&T Bell Laboratories, Inc.

A-i-

Ada Technology Issues

purpose of this report is to identify the problems encountered by real-time embedded
applications using Ada technology and to classify them.

2. Approach

The approach used to obtain the information in this report was to:

1. identify sources of information related to problems with the use of Ada,

2. contact those sources of input and obtain specific information on Ada issues,

3. verify the input obtained with an additional source, where necessary,

4. organize and categorize that information into common areas, and

5. analyze the resultant material for direction in the resolution of these issues.

Three primary sources of input were identified. The most important source of information
was through interviews. Interviews were conducted with program managers, software
managers and application engineers by LabTek personnel to discuss the probiems that were
encountered. The reported problems were analyzed by LabTek personnel and verified by
an additional source (Le. compiler vendors, Ada Joint Program Office (AJPO), etc.) where
necessary. The Ada Runtime Environment Working Group (ARTEWG) and Special
Interest Group on Ada (SIGAda) meetin served as a second source of information.
These meetings and conferences were attended by LabTek personnel with special attention
given to talk concerning Ada and real-time applications. Compiler vendor products, tools,
and methodologies that support them were also reviewed at these meetings. The third
source was the current Ada and software engineering related literature.

2.1 Interviews

LabTek Corp. has established a wide customer base and has been involved with providing
consulting services for many customers on their Ada applications. In addition to conducting
the following interviews, LabTek has included it own experiences in identifying the
problems. Most of the projects interviewed below were still under development at the time
of the interview.

2.1.1 Program Mmnhpr Interviews

a Advanced Field Artillery Tactical Data Systems (AFATDS), Fort Monmouth, NJ,
CECOM

" Army Secure Operating System (ASOS), Fort Monmouth, NJ, CECOM
" Improved HELLFIRE DIGITAL AUTOPILOT (DAP), Redstone Arsenal,
Alabama, MICOM

" Howitzer Improvement Program (HIP), Picatinny Arsenal, AMCOM

" Tank Improvements (M60A3), Picatinny Arsenal, NJ, AMCOM

A-2.

Ada Technology Issues

Nuclear, Biological, & Chemical Reconnaissance (NBCRS), Picatinny Arsenal,
AMCOM

* Sense and Destroy Armor (SADARM), Picatinny Arsenal, NJ, AMCOM

* Single Channel Objective Tactical Terminal (SCOTT), Fort Monmouth, NJ,
CECOM

2.1.2 Private Industry Interviews

* Advanced Field Artillery Tactical Data Systems (AFATDS), Magnavox Electronics
Systems Co., Fort Wayne, Indiana

* Bradley Fighting Vehicle (BEDS), FMC/Digital Turret Distribution Box, San Jose,
CA

. Bradley Fighting Vehicle (DTDB), FMC/Digital Turret Distribution Box, San Jose,
CA

" Bradley Fighting Vehicle, GE/Digital Electronics Control Assembly, Pittsfield, MA

" F4-J Weapon System Trainer, Science Applications International Corp. (SAIC),
Huntsville, Alabama

Lightweight Helicopter (LHX), United Technologies Sikorsky Aircraft, Stratford,
CT

" Tank Improvements (M60A3), Computing Devices Co., Ottowa, Canada

" Nuclear, Biological. & Chemical Reconnaissance (NBCRS), TRW, Redondo
Beach, CA

2.2 ARTEWG and SIGAda Meetlup

The ARTEWG is a group sponsored by SIGAda whose purpose is to address the problems
encountered in runtime environments. Some of these problems are occuri because Ada
compiler implementors are making executive function decisions that application developers
prevously made on their own when they built their own executives. The current
implementations are not satsfyn all embedded application needs. [41 It is ARTEWG's
responsibility to establish conventions, criteria, and guidelines for Ada runtime
environments. This will facilitate reusability and transportability of Ada program
components, improve the performance of those components, and rovide a framework
whig can be used to evaluate Ada runtime systems. Tom Griest of LabTek is an ARTEWG
principal and the leader of subgroup one, the Implementation Dependencies Subgroup. As
such, he participates in the ARTEWG mectings and provides input into its documents.
These documents were examined for their relevance to this report.

The SIGAda meetings are held four times a year (three times in the U.S. and once in
Europe) and LabTek personnel attend these conferences with special attention paid to talks
by users concerning real-time embedded applications and methodologies. Vendor products
are also examined.

A -3-

Ada Technology Issues

2.3 literature

The Ada issues database was obtained from the ARPANET. This database is an
accumulation of problems and questions on Ada and coined "Ada issues". This database
was scanned for the real-time relevant issues.

A literature search was also conducted. Sources included papers from the ARTEWG,
ACM Ada Letters, ACM SIGPLAN Notices, ACM Software Engineering Notes, IEEE
Software, IEEE Transactions on Software Engineering, Defense Science & Electronics and
Computer Language magazine. All relevant articles were reviewed and evaluated.

2.4 Criteria for Issue Definition

To determine the validity of a reported issue two questions were asked: 1) Is the problem
the result of the improper use of Ada?, and 2) Is the problem really a symptom of an
underlying issue? If the answer to question one was affirmative the problem was rejected.
If the answer to question two was affirmative the problem was restated to indicate the true
problem. In addition, LabTek obtained multiple sources reporting the same problem. This
can be seen in section 4, the Issue Vs. Source Matrix.

3. Ada Technology Issues In Real-Time Embedded Systems

Developing software for real-time embedded applications requires diverse skills and
approaches for problem recognition and solution. The software implementation of a
problem solution, however, can be approached by using a set of techniques that are
appLication-independent. These techniques form the basis of a software engineering
methodology. Software engineering is modeled on the time-proven techniques, methods,
and controls associated with hardware development. Although fundamental differences do
exist between hardware and software, the concepts associated with planning, development,
review, and management control are similar for both system elements. The key objectives
of software engineering are 1) a well-defined methodology that addresses a software
life-cycle of planning development, and maintenance, 2) an established set of software
components that documents each step in the life-cycle and shows traceability from step to
step, and 3) a set of predictable milestones that can be reviewed at regular intervals
throughout the software life-cycle. (9]

Ada technology is used to produce the real-time software in an embedded system.
Real-time software measures, aa.yzes and controls real world events as they occr. A
real-time system must respond within strict time constraints. Note that this is different from
"interactive" or "time-shared" where the response time can normally be exceeded without
disastrous results. Ada technology consists of the compilation systems, tools,
methodologies, principles and techniques that are employed to develop and maintain Ada
software.

The problems encountered when using Ada technology for real-time embedded
applications are enumerated here. The problems are divided into different classifications.
In some cases, an issue may be applicable to more than one classification. When this has
occurred the issue has been placed in the classifcation where it has the most significance.
A tree of the different classifications can be seen in Figure 1. The tree provides the
structure fnr section 3 of this report.

A-4-

Ada Technology Issues

To provide easy extraction of problem definition from background and support, each
problem is detailed with these four subheadings:

1.) Issue/Problem Definition - The "Issue/Problem Definition" subheading provides a
conclusive problem definition (what is at issue). If the problem or issue manifests
itself differently than the analyzed and defined (conclusive) problem then a few
sentences restating problem "symptoms" may be included. If there isn't any problem
associated. with a particular classification it will be so stated. In these cases, the
classification was included for completeness to this report.

2.) Background - The "Background" subheading provides a framework for
understanding both the general nature of the problem and the analysis that follows
this part. Brief observations about the problem or issue categorization and a few
sentence discussion of the source(s) of information about the problem will be
included in this subheading, as well as any relevant definitions.

3.) Analysis & Support - The "Analysis & Support" subheading will contain detailed
observations about the substance of the issue as well as any assumptions made by

SLabTek during the analysis. Also included in this subheading is any data or rationale
that supports the findings and a summary of the conclusions about the problem. If
available, any related or connected problems will be mentioned as well as any specific
causes, conditions, or constraints under which the problem manifests itself. It tere is
other specific criteria which may be used by the reader to evaluate the validity of the
conclusions, it will be provided.

4.) Problem Resolution - The "Problem Resolution" subheading may provide
constructive and reasonable recommendations for problem resolution in the form of
plans, approaches, methods, work-arounds, engineering techniques, etc.. It may detail
associated conditions or constraints affecting a reasonable resolution. When a
problem resolution is provided an associated time frame will be given. Within the
context of this report, a "short-term" problem resolution is one that can be
implemented within one to two years, and a "long-term" problem resolution is one
that can be implemented in two to ten years.

A -.

Ada Technology Issues

Figure I. Taxonomy of Softwari Engineering Issues with Ada Technology

Sothia" Engineering Issues Related
To Using Oda Tvc)mlogy in Real-Tim

s9ste"

Sattitare Development
Ca"Vilation Activities "a Managenent A Policies

Related Tools

Muir-s at bole- Integr-
4- Design pent- ation A MUW

ation rest tionts
gn -T-

ts DOW
Pao so"

9 Av

DGM- valu-

ment- top
ation at tow 13

Eval- Sim Inter-

a tow uation t

*P01 i oxab

atiew sum
Sake,

Distri
ust" 1
pros
essing 9tv

A -6

Ada Technology Issues

3.1 Compilation Systems

An Ada compilation system translates an Ada source program into its machine code
equivalent. There are many aspects that make Ada different from other high-order
languages (HOLs). The combination of features to support parallel execution, exception
handling, information hiding, strong typing, etc., make it different. However, with respect to
real-time embedded applications, the most significant difference is the inclusion of a tasking
model and other features that were previously not pan of other HOLs, but of a separate
executive. Now, the Ada compilation system supplies the code that was previously provided
by a separate executive. That is, Ada compilation systems provide an extensive "runtime"
which other traditional compilers did not. The runtime (also called runtime support) is the
set of procedures or functions required to support the code *enerated from a compilation
(i.e. entry call in a task, exception raising, abort processing, string catenation, etc.).

The following sections discuss the problems with the currently available Ada compilation
systems in detail.

3.1.1 Runtime Environments

I.sue/Problem Definition: In other languages, application writers were accustomed to
tailoring their executives so that they were extremely efficient for a particular application.
Now, with the advent of Ada, the compiler implementors have control of the runtime
environment, and that tailoring ability has been lost to a great extent in the current
generation of Ada products.

Backgmund: Applications are dependent on the runtime to provide an efficient
implementation to support system services (ie. tasking, storage management, exception
handling, etc.). A runtime environment (RTE) includes all of the runtime support routines,
the conventions between the runtime routines and the compiler, and the underlying virtual
machine of the target computer. Virtual is used in the sense that is may be a machine with
layered software (a host operating stm). An RTE does not include the application itself,
but includes everything the application can interact with. Each layer has a protocol
between it and the layer underneath it for interfmng. In the event that there isn't any
operating system layer, the runtime includes those low-evel functions found in an operating
system. See Figure 2.

,6-7-

Ada Technology Issues

Figure 2. Ada Runtime Environment (RTE)

This information was supplied by the following sources: Project Interviews, ARTEWG &
SIGAda Meetings, Current Software Engineering Literature, and LabTek Experience.

Analysis & Suppor. The complexity of the interface between the runtime and the generated
code from the Ada compiler is substantiaL The difficulty is in the lack of intimate
knowledge of how the runtime links to the compiler generated code. Furthermore, the
runime must meet a rigorous set of tests to insure that it complies with the Ada standard.
The runtime environment of the Aa compilation system must always comply with the rules
of the Ada language as defined by the Reference Manual for the Ada Programming
Language. These are major changes from the way other runtimes were developed in the
past.

In summary, there is always a reluctance on the part of a programmer to give up control.
The problem will become less severe as the compiler vendors provide greater flexibility in
their runtimes and as software designers learn to take advantage of the features that are
provided.

Problem Resoluion: (Short Term) A list should be generated of what Ada runtime features
are most needed by real-time embedded application. This list could be provided to
compiler implementors, and later used as a checklist by people evaluating compilers.

(Long Term) These features, if provided in a configurable runtime, could solve many of the
real-time issues.

A.8-

Ada Technology Issues

3.1.1.1 Conflgurabillty

mue/Problem Definition: Ada runtime environments do not always provide sufficient
configurability.

Backround: Software is said to be "configurable" if the user can select various options
when building the application software. In the case of the Ada runtime environment, a
configurable component might be the type of scheduler used for the tasking algorithm.

This information was supplied by the following sources: Project Interviews, ARTEWG &
SIGAda Meetings, Current Software Engineering Literature, and LabTek Experience.

Analysis & Support: There is a trend developing towards providing "intelligent" loading
capabilities. An intelli$ent loader will only load those features of the runtime that are
required by the application. That is, there is no point in loading the code to support tasking,
if tasking is not used by the application. In a sense, this could be considered a configuration
of the runtime. However, runtime configurability, in the context of this report, would allow
an a plication engineer to specify such features as: the tasking algorithm used by the
scheduler, or the memory management technique used, (among others). In conducting the
various interviews, intelligent loading capabilities were ap However, when a special
runtime configuration was needed (-uch as a particular t oscheduler), the contractor
had to rely on the compiler vendor to perform the configuration.

In summary, this will be a more severe problem for some applications than others. A voup
of engineers trying to write an operating system in Ada will have extreme difficulty if not
able to control the tasking aspects of the runtime. Compiler vendors are aware that users
need configurable runtimes due to the requests they receive to tailor them.

Some people doubt whether complete "configurability" is even possible for real-time
embedded systems and feel that some "hand tuning" will always be necessary. The general
belief is that it is possible to achieve the necessary performance and adaptation
requirements for most systems if sufcient configurability is provided.

Problem Resoludon:

(Short Term)

1.) The ability for users to provide substitutes for any vendor supplied runtime
routines is necessary. This is believed to be the only way that distributed systems can
be developed, as well as many non-standard single-processor implementations.

2.) The vendors must supply sufficient interface information on their runtime routines
to allow customers to make these substitutions.

3.) Schedules must include time for this customization process.

(Long Term)

4.) Vendors should be encouraged to provide configurability that has a high degree of
automation. This configuration process must be able to be performed by the
application engineers, since relying on the compiler vendor often results in an

A.9-

Ada Technology issues

unacceptable delay. An W.ility to selectively choose from among several versions of
the runtime routnes to build a runtime environment that is customized for a
particular application is what is needed. In this way, the optimal tasking algorithm
(dynamic priorities, run-till-blocked, round-robin, time slicing, etc.) can be chosen.
Menu oriented systems that verify compatibility are probably best. Provisions must
be made with the configuration management mechanism to allow determining the
components of a generated runtime.

5.) Support tools to make the configuration process semi-automatic and reliable.

Issue/Problem Definition: A configurable math library is required by many projects, and is
not provided. Along with the library, a set of tests should be provided to verify the accuracy
of the library after changes have been made.

Background: Accuracy and timing vary greatly from application to application. For
example, some projects use a look-up table for speed in computing transcendental
functions.

This information was supplied by the following sources: Project Interviews, ARTEWG &
SIGAda Meetings, Current Software Engineering literature, and LabTek Experience.

Analysis & Suppor. A mechanism is needed which allows users to modify the standard math
library provided by vendors. (Note: the Ada language does not include facilities for
transcendental math functions.) In talking with the various engineers it was pointed out that
many projects have their own math library.

In summary, many applications custom code their own math library. This practice should
be changed.

Problem Resolution: (Short Term) Ada math libraries are being developed and placed into
the public domain. Provisions must be made for making application builders aware of this
resource.

3.1.1.2 Execution Performance

Issue/Problem Def ton: The quality of the compiler generated code is often inadequate
for real-time embedded systems.

Background: Efficiency is used in this context to mean the combined performance of the
compiler generated code and the runtime. It is a relative term, comparing the processing
rate of the high level code to the hypothetical optimal assembly language.

Timing is a critical constraint in a real-time application. The sampling of data, a calculation
providing input to a feedback loop, the driving of servos, the handli of external interrupts
are some examples of functions that must be performed in a precise nie intervaL If they
are not performed in the specified time interval the system will not function properly. In a
flight system this problem could be manifested in a pilot receiving the wrong positional
information at a critical time. Although the runtime can create short term processing
delays, the average throughput of the computer is generally most impacted by the
optimization of the generated code.

A .10-

Ada Technology Issues

This information was supplied by the following sources: Project Interviews, ARTEWG &
SIGAda Meetings, Current Software Engineering Literature, and LabTek Experience.

Analysis & Support: Which Ada features are most costly to use is a function of each
implementation. Examples of critical areas where the runtime code has to be efficient are:

The Ada rendezvous (task signalling and communication). In general, the task
management function tends to have the greatest amount of overhead.

, Dynamic storage management.

* Exception handling. Often the problem is avoiding overhead in the absence of
exceptions. Since every subprogram invocation involves a new exception scope, care
must be taken to reduce the overhead associated with maintaining the current
appropriate exception handler. Tradeoffs can be made between exception handling
that propagate exceptions quickly, or those that do not impose delays during normal
(non-exception) processing. Most exceptions occur only when severe problems
(hardware or design) exist, provided the exception mechanism isn't misused.
-Therefore the penalty for slow exception handling is usually acceptable if
non-exception processing can execute without additional overhead.

* Constraint checking is another candidate, depending on the implementation. When
constraint checking becomes too severe, most implementations have a mechanism to
disable the constraint checks. Ada provides a standard technique for this in the
SUPPRESS pragma.

• Support for interrupts.

* Procedure call overhead.

* Stack overflow check.

0 Array referencing.

In summary, eighty one percent of the projects interviewed reported that the quality of the
generated code was a major problem for their real-time embedded application.

Problem Resohion: (Long Term) Vendors should be encouraged to provide a high degree
of optimization. This encouragement can take the form of a policy to interpret the
language standard so as to permit optimizations where they are currently limited by
language rules. Compilers must also be improved to take advantage of the interaction of
the suppress pragma and optimization. That is, the rules requiring the proper point of
raising exceptions restrict some optimizations. If the checks are suppressed by a pragma,
these additional optimizations can take place.

Another solution might be to subset use of language features and optimize for that subset.

3.1.1.3 Evaluation

I eue/Problem Definition: It is difficult to evaluate Ada runtime environments for suitability
in an application.

A -11-

Ada Technology Issues

Background: Evaluation is the ability to determine whether or not the runtime environment
under consideration will be adequate for a particular application.

This information was supplied by the following sources: Project Interviews, ARTEWG &

SIGAda Meetings.

Anayris & Support: Often the compiler user's manual is the only material available to lend
insight into the intricacies of the compiler. Frequently it is inadequate for detailedevaluation.

An area where this is especially true is in measuring the dynamic memory usage. One of
the requirements the US Army places on its contractors is that 50% of the total memory be
reserved for expansion. Since Ada allocates memory dynamically, it is often difficuft to
insure that the worst case will not use some of the reserved 50% of memory. It should be
possible to compute the memory usage, but the documentation for many Ada
implementations do not provide sufficient detail to allow this. The use of dynamic memory
allocation cannot be avoided simply by elminarig the use of Ada "allocators" in the source
code. Ada compilation systems use dynamic memory allocation/deallocation for many
different operations, from allocating space on the stack for subprogram parameters to usingheap storage for manipulation of unconstrained arrays. Some tasking implementations
require dynamic storage allocation to provide a separate task stack and task controI block
that is allocaed during task elaboration. Therefore the user may not know what featuresuse dynamic storage allocation, and it may change in future releases of the compiler system.

In summary, often the only means of evaluating a compiler before purchase is through the
documentation and talking with the compiler vendor. The details of how the compiler
implements the semantics of the Ada code must be made known to the application
developers in order for them to assess the impacts and tradeoffs of using various Ada
language constructs. In general very little performance data is currently available for Ada
compilation systems. The best method for determining the critical timing parameters and
storage usage is to analyze the code of the runtime routines. Ideally the vendor should
perform this analysis and provide the information to perspective customers. In practice,
partially due to the frequent changes made to the runtimes, the vendors do not have this
information available. The users are often forced to purchase the compiler and source code
of the runtime in order to complete their evaluation.

Problem Resoution: (Short Term) Provide users with an accurate estimate of the overhead
an capabilities associated with the various Ada implementations. This would require that a
study on RTEs be performed and benchmarks run for evaluation. The options available in
terms of configurability should be included, with sizes listed and limitations imposed on the
application when selecn the different ron. For example, if restricted tasking
service is selected, the applicaon may be limited to using only erendezvous capability
with no parameters supported. In particular, the f 0ctonalisy and size of a minimal RTE
should be specified.

(Long Term) Benchmarks must be developed that indicate critical timing issues of Ada
implementations. These are extremely difficult and time consuming to generate. For this
reason, it is important that an effort be supported to develop these tests and to make them
available to the Ada community. Ideally, each compiler that is suitable for embedded
processor use could be evaluated each year after it validates, and its evaluation placed in
the public domain. The activities of the Ada Compiler Evaluation Capability (ACEC)

A -12'

Ada Technology Issues

effort and the Performance Issues Working Group (PIWG) of SIGAda should be
monitored, and if appropriate, supported.

3.1.1.4 Size

Issue/Problem Definition: Runtime environment (RTE) sizes are often too large.

Background: Size, in this context, refers to the memory capacity required to accommodate
tne runume.

This information was supplied by the following sources: Project Interviews, and LabTek
Experience.

Analyis & Support Some applications may have a total memory capacity of only 8K bytes.
With the US Army requirement that 50% of total memory be reserved for future expansion,
this leaves 4K bytes available for the RTE and the application code. It is currently not
technically possible to put the RTE and the application code in 4K bytes. The smallest
RTE encountered was 6K bytes, but smaller RTEs are gradually appearing.

A question that many people ask is "Why is the RTE so big?". The pressure on the vendors
has been to validate early, rather than optimize the runtimes. Also, the effort required to
produce small runtimes is significant. The trend now is to address these issues and to
reduce the runtime size. The competition in the Ada compiler market is forcing changes to
occur.

Another concern relating to configurable runtimes is "When does one know how big the
total runtime is going to be?". The exact answer will not be determined until the
implementation of the application is completed. However, a fairly accurate estimate is
needed before development begins in order to insure that the system has sufficient memory
capacity. It should be possible to make a more accurate estimate when the vendors provide
documentation about their configurable runtimes. Still, a significant amount of the
application will need to be known (e.g. what Ada features are used) prior to developing an
accurate estmate.

In summary, sixty-nine percent of the projects interviewed reported that the runtime
required a substantial percentage of the total system memory thus severely limiting the
memory available for the application code.

Problem Resolution: (Short Term) A partial solution is to use a customized RTE at the
expense of not being able to use full Ada (i.e. text io, generics, tasking and dynamic
allocation). Restricting the use of Ada features may als5 limit the ability to reuse previously
developed software.

It has been suggested that for applications with very stringent memory requirements, a
stripped down version of Ada be used so that the runtime is minimal This combined with a
heavy reliance on assembler code would allow very small applications to be written partially
in Ada. The benefit of this approach is questionable. The application would probably be
better written entirely in assembler rather than a mixture of Ada and assembly language
when the amount of Ada code is small the runtime has been virtually eliminated, and
extensive use of assembler is made.

A -13-

Ada Technology Issues

Issu/?r.blem Dfni'on: Memory is a. critical constraint in many real-time embedded
applications.

Background: Although the current trend is to think that memory is inexpensive and can be
4.4 if additional memory is needed, this is not the case for some embedded applications.

This information was supplied by the following sources: Project Interviews, and LabTek
Experience.

Analyis & Support: Following are reasons why memory is a constraint in some systems:

' Use of Single Board Computers (SBC). A SBC consists of a processor, memory,
and I/O ports on the same board. The advantage to having on-board memory is that
signals do not have to be sent over the backplane, thus reducing the time to read and
write the memory. This can significantly increase performance.

* Packaging. If additional memory is required, it is not always feasible to add an
additional memory board. In many cases there is no room to add another board, or
there are weight and power considerations. Replacing the existing memory chips with
denser memory chips does not always solve the problem either. Special requirementsare placed on systems when memory must be radiation hardened. Density and cost of
this type of memory, which is necessary in many military applications, do not lend
themselves to "just adding more".

* Single Chip Computers. Use of Large Scale Integration (LSI) single chip computers
often restricts memory to less than 4KB of ROM and 256 bytes of RAM. These
processors increase reliability and reduce costs in areas where they can support the
processing required. Other benefits include lower power consumption and reduced
weight anid size.

In summary, fifty-six percent of the projects interviewed reported that memory was a
constraint in their system Although hardware engineers can provide numerous reasons why
additional memory cannot be added (e.g. increased weight, increased power consumption,
board layout modifications, cost, retrofits), these reasons can no longer be accepted if Ada
is to be used in all weapon system softwarm

Problem Resoludon: (Short Term) Hardware desidg should be made aware of the
directive to use Ada in weapon systems, and include sufficient memory in their designs to
accommodate Ada.

(Short Term) An investiption into the expansion of memory for embedded computers is
needed. Information about optimal memory technologies has to be provided to the
hardware designers.

Another solution might be to subset use of language features and opimize for that subset.

3.1.1.5 Dynamle Priorities

!zse/Problm Defniton: There isn't any provision for dynamic priorities of tasks in the
Ada langu ge.

A .14-

Ada Technology issues

Background: A task is said to have a "dynamic priority" if its priority level is changeable at
execution time. Some applications have the need to dynamically alter the priority of a
currently running task.

This information was supplied by the following sources: ARTEWG & SIGAda Meetings,
and LabTek Experience.

Analysis & Support: Ada does not support a capability for dynamically altering the priority
of a currently running task. The value for the PRAGMA PRIORITY is static and therefore
cannot be changed at runtime. Implementations may support an alternate set of priorities
that control tasking in the case where the Ada PRIORITY is identical or undefined. That
is, if two tasks have the same priority, the implementation is free to schedule them in any
order. This allows an implementation defined subpriority, which may be dynamic, to
control the scheduling. This capability is not supported by many implementations, and a
standard does not exist to help provide commonality.

In summary, dynamic priorities are required by some real-time applications, and they are
not provided for by the Ada language. The user can implement a limited form of dynamic
priorities with considerable effort.

Problem Resoliaion: (Long Term) The areas of the language that do not directly support
application requirements should be evaluated to determine if a consistent approach to
support these requirements is possible. If these services can be provided in an acceptable
manner without a language change, then this is the desired approach. However, in some
cases it may be desirable to make small, compatible changes in the language in order to
accommodate these requirements in a more effcient and consistent fashion.

(Long Term) Changes to the standard for the Ada Language (ANSI/MIL-STD-1815A) that
would alleviate problems encountered by real-time embedded systems should be
considered. Although making specific changes is beyond the scope of this study, a possible
candidate for evaluation is "Dynamic Priorities".

3.1.1.6 Parallel Processing

Isse/Problem Depfdion: Current RTE's do not support parallel processing.

Background: Most signal processing functions require parallel data-path computers.

This information was supplied by the following sources: ARTEWG & SIGAda Meetings,
and LabTek Experience.

Analysis & Support. The Reference Manual for the Ada Programming Language, section
4.5(5), states that operands of an expression "are evaluated in some order that is not defined
by the language". This appears to exclude parallel execution, as would be the case in a
MIMD (multiple instruction multiple data) machine. Confusion is provided by the note in
the Reference Manual, section 9(5), that talks about the flexibility to use multiple
processors when the same effect is guaranteed. However, this is just a note and not
technically part of the standard.

Further clarification is provided in the "Rationale for the Design of the Ada Programming
Language." In section 3.8, "Assignment Statements - The Ada Model of Time", on page 29

A -IS-

Ada Technology Issues

paragraph 7, it states: "Note finally tb u whenever order is not defined, the reference
manual uses the phrase 'in some order that is not defined', rather than the phrase 'in any
order'. The intent of the chosen wording is to leave the order undefined but nevertheless
require that it be done in some order, and thus EXCLUDE PARALLEL EVALUATION".
(emphasis added].

The Rationale continues with the reason for this restriction. This issue and others similar to
it, notably in the constraint checking/handling areas, seem to be overly restrictive with
respect to parallel architectures. Specifically, single instruction multiple data (SLMD),
multiple instruction multiple data (MIMD), and massively parallel processors (MPP), will
be extremely limited if relaxation of this interpretation is not forthcoming.

Problem Resolution: (Long Term) The areas of the language that do not directly support
application requirements should be evaluated to determine if a consistent approach to
support these requirements is possible. If these services can be provided in an acceptable
manner without a language change, then this is the desired approach. However, in some
cases it may be desirable to make small, compatible changes in the language in order to
accommodate these requirements in a more efficient and consistent fashion.

(Long Term) Changes to the standard for the Ada Language (ANSI/MIL-STD-1815A) that
would alleviate problems encountered by real-time embedded systems should be
considered. Although maing specific changes is beyond the scope of this study, a possible
candidate for evaluation is "Parallel Processing".

3.1.1.7 Support of Low Level Operations

f.trte/Problem Definition: Ada does not provide a mechanism to control the processor state
(including interrupt masks required for critical sections).

Background: Although Ada provides a mechanism to directly manipulate memory mapped
hardware, no capabilty exists within the language to access internal processor registers.
Such a mechanism would be difficult to standardize across many architectures.

This information was supplied by the following sources: Project Interviews, and LabTek
Experience.

Anatuy & Support. Provision should be made in implemenations so that users can control
the processor state and not interfere with the rtime system. For example, some
implementations require that the application run in a non-privileged state (USER MODE).
This is not always acceptable, and simply executing an assembly language routine to change
to SYSTEM MODE will not solve the problem. Changing the processor state from USER
to SYSTEM, needs to be done in conjunction with the-runtime. Since stacks used for
different states are often separate, smply cdaing state will result in an error condition.
Also, subsequent calls to the rimme (possibly due to exceptions) are likely to cause
unpredictable results.

In summary, in real-time programming there is frequently a need to enable and disable
interrupts which is performed by setting or clearing interrupt mask. It is easy for a
programmer to write an assembly language routine to manipulate an interrupt mask and
call this routine from an Ada program. The problem occurs because the assembly language
routine is not working in onjunction with the runtme environment provided.

A

Ada Technology Issues

Unpredictable results could occur. The way for the user to manipulate interrupt masks
(and processor state) without interfering with the runtime is to have the compiler vendors
supply a routine to do this that is compatible with their runtime environment.

Problem Resolution: (Long Term) Provision should be made in implementations so that
users can control the processor state, and not interfere with the runtime system.

(Long Term) The areas of the language that do not directly support application
requirements should be evaluated to determine if a consistent approach to support these
requirements is possible. If these services can be provided in an acceptable manner without
a language change, then this is the desired approach. However, in some cases it may be
desirable to make small, cormpatible changes in the language in order to accommodate
these requirements in a more efficient and consistent fashion.

(Long Term) Changes to the standard for the Ada Language (ANSI/MILSTD.1815A) that
would alleviate problems encountered by real-time embedded systems should be
considered. Although making specific changes is beyond the scope of this study, a possible
candidate for evaluation is "Support of Low Level Operations".

3.1.1.8 Task Restart

Irsue/Problem Deinition: Applications which require that a separate thread of control
(task) be restarted at the beginning after being interrupted part way through have difficulty
mapping this requirement to Ada.

Background: An example where a task restart would be needed is in the following situation:
Suppose that an aircraft was on a mission to deliver a weapon to a specified target. The
pilot flies within the vicinity of the target. The flight control software activates an Ada task
which calculates the current aircraft position as well as the target position. Before this cask
can complete, a task of higher priority becomes active, a task to defend the aircraft against
incoming threats. The pilot performs the necessary defensive maneuvers and once the
threat is no longer a threat, the pilot resumes with the mission to deliver the weapon to the
target. However, the aircraft is no longer at the same position that the previously
suspended Ada task recorded. If the suspended Ada task became active now, the positional
information would be wrong and would lead to disastrous results. What is needed here is
the ability to restart this task.

This information was supplied by the following sources: ARTEWG & SIGAda Meetings.

Analysis & Suppor: The obvious question is: is this really a requirement, or simply the
implementation of a requirement? After careful scrutiny, it appears that certain
applications do have a need to be able to have multiple tasks, where one task might be
preempted by a higher priority task, and the result of the preemption is to make the
continuation of the preempted task meaningless. The standard Ada solution to this
problem is to ABORT the preempted task, and then re-activate a new task. This creates a
few undesirable side effects, not the least of which is likely to be unacceptable performance
degradation.

In summary, there are real-time applications which have a need for a task restart capability.

A .17.

Ada Technology Issues

Note: Preliminary Ada (May 1979) provided for an exception "FAILURE" to be :.,sed
within one task from another task. This would support the desired effect of "Task Restart",
however the feature was removed from the language prior to the 1980 version.

Problem Resolution: (Long Term) The areas of the language that do not directly support
application requirements should be evaluated to determine if a consistent approach to
support these requirements is possible. If these services can be provided in an acceptable
manner without a language change, then this is the desired approach. However, in some
cases it may be desirable to make small, compatible changes in the language in order to
accommodate these requirements in a more efficient and consistent fashion.

(Long Term) Changes to the standard for the Ada Language (ANSI/MIL-STD-1815A) that
would alleviate problems encountered by real-time embedded systems should be
considered. Although making specific changes is beyond the scope of this study, a possible
candidate for evaluation is 'Task Restart".

3.1.1.9 Cyclic Scheduling

Issue/Problem Definition: There is no explicit provision for cyclic executives in the Ada
language.

Backgrund: A cyclic executive runs on a scheduled time basis and is either difficult or
impossible to achieve with accuracy on many implementations.

The
loop

end loop;

structure is not sufficient since it is not periodic. If different control paths are taken within
the loop, or if other tasks (possibly interrupt level) preempt execution, then this loop will
not execute in constant time.

This information was supplied by the following sources: ARTEWG & SIGAda Meetings,
and LabTek Experience.

Analjsi & Supporn The Ada language can support some degree of periodic processing by
using the DELAY statement. Although some implementations provide a reasonable
mechanism for this, the DELAY statement is not always adequate for this application.
(Note: many people are concerned with the wording in the Reference Manual for the Ada
Programming 7Langae regrding the accutacy of the delay in a DELAY statement: "...for
at le~as the duration specified bythe resulting value'. This is not the problem, although it
can contribute to it.) Assming that an implementation has infinite accuracy for type
DURATION and DELAYs exactly that amount, there is still a problem specifying the
duration for a cyclic task. The problem is that the duration value is a delay from the current
time, not a fixed interval. Therefore, the clock must be read and the cycle computed in the
simple expression allowed for the delay statement. However, there is no way to insure that
an interrupt (and possibly a higher priority task) is not executed between the time the clock
is read in the simpleexpression and when the delay duration is actually interpreted by the

A -18-,

Ada Technology Issues

runtime. This allows the execution of the cycle to bein with possibly twice as much jitter as

what would normally be expected due to higher priority processing.

In summary, cyclic executives are an important part of real-time embedded software. How
they are implemented in Ada is something that requires careful consideration.

Non-Solutions: An implementation could provide a pragma that would insure that the
expression in the following DELAY statement is implemented as non-interruptible, thus
resolving this issue, but at the price of being rather messy (not recommended).

Another non-solution is the use of interrupt tasks, and using a hardware interval timr to
provide the periodic scheduling. This will work in some applications, but for those
applications that have several different periods, this quickly becomes unmanageable.

Problem Resolution: (Long Term) The areas of the language that do not directly support
application requirements should be evaluated to determine if a consistent approach to
support these requirements is possible. If these services can be provided in an aceptable
manner without a language change, then this is the desired approach. However, in some
cases it may be desirable to make small, compatible changes in the language in order to
accommodate these requirements in a more efficient and consistent fashion.

(Long Term) Changes to the standard for the Ada Language (ANSI/NI.,-STD-1815A) that
would alleviate problems encountered by real-time embedded systems should be
considered. Although making specific changes is beyond the scope of this study, a possible
candidate for evaluation is "Cyclic Scheduling".

3.1.1.10 Floating Point Coprocessor Support

lssue/Problem Defnition: There is a lack of a standard for floating point coprocessor
support. Some compilers require a floating point chip to perform floating point
calculations, other compilers can't utize the chip if present.

Background: A floating point coprocessor is a high-performance numerics processing
element that extends the main processor architecture by adding significant numeric
capabilities and direct support for floating-point, extended integer, and BCD data types.

This information was supplied by the following sources: Project Interviews, and LabTek
Experience.

Analyss & 5uppo. Applications should have the option to run with or without a
coprocessor. Al compilers should provide floating point capabilities independent of
whether the floating point processor is configured into the system or not.

The presence of a floating point chip would increase performance in a real-time embedded
application that requited floating point operations to be performed. On the other hand, an
application may not be able to repack;!ge to include a floating point chip on the board and
this application could utilize a software floating point emulation.

The use of tasking introduces additional overhead when the floating point chip is present.
The floating point coprocessors contain internal registers which must be saved and restored
during task switches. Ideally, intelligent context switch software (or hardware) would only

A .19-

Ada Technology Issues

save and restore these registers when a 'context switch occurs to a task that uses floating
point, instead of when any context switch occurs.

Also, the support for the intrinsic functions such as sine and cosine are important. These
functions are not part of the Ada language and need not be supplied by an Ada compiler
vendor to validate. A numerics working group exists within SIGAda to attempt to
standardize the interface to common numeric functions. For the greatest amount of
efficiency, it is usually best that the vendor supply these functions as a special package. This
allows the implementation to take advantage of the hardware that is available. When a
math coprocessor is supported, it should be used to implement these functions, since their
calculation is often greater than fifty times faster using the hardware coprocessor. With
proper compiler optimization and use of the INXiNE pragma, it can be possible to achieve
nearly optimal use of floating point accelerators even with user written packages.

In summary, the decision to use the floating point chip should be up to the application
programmer and the Ada compiler should perform properly with or without the presence of
the floating point chip.

Problem Resoluion: (Short Term) The evaluation of compilers should include a section

regarding the support level for coprocessors.

3.1.1.11 Distributed Processing

Isnse/Problem Definiton: There are no commercially available Ada implementations
whose runtime environments support distributed computer configurations that operate over
communication links.

Background: A distributed system is a configuration of processors, memories, and Links in
which each processor has a designated local memory that it can access in significantly less
time than it can access either shared memory or the local memory of other processors.
Typically, such systems have a high bandwidth communication link between processors but
little or no shared memory. The key to efficient use of these systems is to structure the
system and distribute the work load so as to limit the interprocessor communication. [141

This information was supplied by the following sources: Project Interviews, ARTEWG &
SIGAda Meetings, Current Software Engineering Literature, and LabTek Experience.

Analysis & Support:. Progress has been made in the area of shared-memory multiprocessor
implementations of Ada, however the technology is closely coupled to the hardware
configuration and cannot be easily migrated to other targets. Currently, distributed
processor software is most often being developed as individua Ada programs with custom
communication services rather than as monolithic Ada programs.

In summary., there is no common approach to developing runtime environments,
methodologies, and tools that support the distribution of Ada program entities across
multiprocessor configurations or distributed networks. (4]

Problem Resoluton: (Long Term) Distributed processing. in the sense that Ada tasks from
a single program are distributed across several processors connected by a communication
link, is an area that still requires r',arch and development. Solving the problems of
communication errors, possible failure of a processor, and implementing efficient

A -20.

Ada Technology Issues

"SELECT' statements for the Ada rendezvous will require more time and effort before the
results are available to the general public.

3.1.1.12 Multi-level Security Support

I sue/Problem Defiiton: Ada runtime environments do not currently support multi-level
security.

Background: Security is the protection of computer hardware and software from accidental
or malicious access, use, modification, destruction, denial of service, or disclosure. [11]

This information was supplied by the following sources: Project Interviews, ARTEWG &
SIGAda Meetings, and Current Software Engineering Literature.

AnaLysis & Support: The vast amount of software being developed is for large distributed
battlefield computer systems. These systems tend to involve many different aspects of
battle management ranging from traccn and launching to maintaining personnel records.
Likewise, the operators tend to have different security requirements. The need for the
software to be built on top of a secure operating system stems from these conditions. An
officer who needs only to assess the current ammunition reserves should not be able to
launch weapons.
In summary, without providing a secure base upon which the Ada application runs, security
in an integrated battefield system cannot be insured. It is possible to develop an Ada

application layered on top of an existin$ secure operating system, but available secure
operating systems are currently not very suitable for most real-time embedded applications.

However there are many small projects that are unlikely to require multi-level security since
they are stand-alone processors with a limited number of functions, all at the same security
level.

Problem Resoluion: (Long Term) Like Distributed Processing above, the area of security
will require time and effort before small, efficient, secure runtumes are available for use on
real-time embedded systems. If this area is a priority for the military, then it will probably
require special funding. Since the perception of a weak market for secure embedded
systems exists, commercial compiler vendors will need encouragement to devote resources
to this effort. -

3.1.1.13 Reliability

lssue/Problem Defnition: With respect to software reliability, Ada systems are too new to
provide any significant data as to whether programs written in Ada are more reliable than
those written in other languages. Reliability in Ada systems is not seen as a problem at this
time, and this section was only included for completeness.

B a d: Reliability is the ability of an item to perform a required function under stated
conditions for a stated period of time. Software reliability is the probability that software
will not cause the failure of a system for a specified time under specified conditions. It's the
abilky of a program to perform a required function under stated conditions for a stated
period of time. [111

A-21-

Ada Technology Issues

This information was supplied by the following sources: Project Interviews, ARTEWG &
SIGAda Meetings, and LabTek Experience.

Analysi & Suppor. As experience with Ada technology increases, more information will
become available as to the reliability of the systems developed in Ada. It is felt that the
strong typing mechanism of Ada is extremely valuable with respect to reliability. This
mechanism insures that all variables are identified and typed and assignments are checked
to be valid at execution time.

Due to the immarturity and frequent updates for Ada compilers, a short-term reliability
problem may be found with some implementations because of errors with the compilation
and/or runtime systems.

Problem Resoludon: Since reliability does not present a problem, there is no problem
resolution required at present.

lsue/Problem Dfiten: With respect to supporting hardware reliability, Ada does not
address the reliability issue with any specific language constructs.

Backrozund: CPU fault tolerance is the built-in capability of a system to provide continued
correct execution in the presence of a limited number of hardware or software faults. (11]

This information was supplied by the following sources: Project Interviews, ARTEWG &
SIGAda Meetings, and LabTek Experience.

Ancysi & Support: Ultra high reliable systems require that the software continue to
operate in the presence of CPU faults. Although this may seem impossible, careful analysis
indicates that many faults (for example nuclear EMP) are momentary and do not result in
permanent interruption in processing capability. However, it is essential that the program
be able to recover from such faults ad continue execution from the last check point. In
ballistic missile systems check points may be as close as a few instructions in order to
minimize the disruption. The program must constantly be storing multiple copies of check
point addresses and data used in computations. Ada does not directly support the ability to
recover from such CPU faults.

In summary, Ada does not support hardware reliability with specific language constructs.
Exception handlers are provided to detect software faults, but in rare cases may also be
used to detect and recover from hardware faults.

Problem Resolution: (Long Term) Reliability in this context is specific to recovery from
CPU fauits. Although it is posmble for an Ada program to checkpoint its at adueto the
complexity of program elaboration, it would be difcfult with an off-the-shelf runtime to
roll-back and recover from a CPU reset. Unlike assembly language routines where data is
largely statically allocated, Ada's dynamic nature of data makes reconstruction much more
difficult. Research and development needs to be done to resolve the impact of using Ada in
the most critical applications areas where extended interruption of service is unacceptable.

3.1.2 Code Quality

Imue/Problen Definition: The .ality of the generated code, in terms of being optimal, was
a major problem for many real-time embedded systems.

A -22-,

Ada Technology Issues

Background: The quality of the generated code has a tremendous impact on the ability to
use a compiler for :eal-time software production. Ideally, the code generated by the
compiler would be nearly as efficient as what an experienced assembly language
programmer could produce. This has always been an elusive goal, however it is not unheard
of to have some programs developed in a high level language perform better than their
assembly language counterparts. This is generally due to an inproved algorithm that was
practical to implement because of the high level language.

This information was supplied by the following sources: Project Interviews, ARTEWG &
SIGAda Meetings, Current Software Engineering Literature, and LabTek Experience.

Ana/ysis & Support: In Ada. optimization is very important in order to eliminate
unnecessary runtime checking. Although the runtime checks can be suppressed, it is often
desirable to leave them on to detect latent software faults, or even some hardware faults.

Subprogram invocation is another very important area for optimization. Due to the strict
rules of passing parameters, elaborating and initializing local objects, and entering new
exception scopes for each subprogram call, it is essential that this mechanism be kept as
efficient as possible.

There is no substitution for having optimized code. The difference between optimization
and no optimization can be as much as 15 to I or greater in performance, although typical
numbers are much smaller. The excuse that computer hardware is much faster than it used
to be, and therefore code efficiency is no longer as important, is only partially true. The
efficiency that can be sacrificed so that a high order language can be used varies
tremendously from application to aplication. In general, knowing the code quality of the
proposed compilation system should be a major concern, so that the appropriate speed
processor can be selected for the application.

In summary, eighty-one percent of the projects interviewed reported that the quality of the
generated code was a major problem for real-time embedded applications.

Non-Soiuion: When confronted with a large overhead in subprogram invocation the
alternative is to force proamm ers away from the modularit of subprograms and back into
straight-line coding practces. In some cases the pragm INIUNE can be used to generate
the subprogram statements in line at the point of call, and to avoid much of the overhead
associated with the calling sequence. However, this can become impractical when calls are
made to the subprogram from many points in the program due to the large expansion in
code size.

Non-Soluion: The measure of last resort is to fall back to assembly language in the most
time critical aspects of the program. This works very well for applications that are large, but
have a small real-time component. All too often however, po tend to have time
critical portions spread throughout. In these cases, the high level code portion looks like
initialization code that calls the main assembly language program (not recommended).

Problem Resolution: (Long Term) The area of code quality can be resolved by applying
commercial incentives on vendors improving their products. This can be accomplished by
implementation of the recommendation specified under section 3.1.1.3.

,-23-

Ada Technology Issues

3.1.3 Documentation

Issue/Pr.blem Definition: Areas lacking in compiler vendor documentation are details
concerning: 1) critical timing parameters, and 2) the runtime environment.

Background: In this section, "documentation" refers to the compiler documentation.

This information was supplied by the following sources: Project Interviews, and LabTek
Experience.

Analysis & Support. Sixty-three percent of the projects interviewed reported that
inadequacies were encountered with the compiler documentation. This was particularly
evident in the area of critical timing parameters (Le., task context switch time, synchronous
rendezvous time, complex rendezvous time, and interrupt latency time). Values for times,
such as interrupt latency due to disabled interrupts within the runtime are usuallUy not
provided in the standard documentation (and sometimes impossible to obtain). These
values are needed in order to compute what variance can be expected with the DELAY
statement and other timing issues. It is extremely difficult to use benchmarks to measure
this type of timing. Benchmarks tend to show typical or average execution times. What is
often more important is the worst case time.

This issue should not to be confused with the information supplied in Appendix F of the
compiler documentation entitled "Implementation-Dependent Characteristics", as specified
by ANSI-MIL-STD-1815A-1983. Appendix F specifies: 1) The form, allowed places, and
effect of every implementation dependent pragma. 2) The name and the type of eve
implementation-dependent attribute. 3) The s ecification of the package SYSTEM. 4)

The list of all restrictions on representation clauses. 5) The conventions used for any
implementation-generated name denoting implementation-dependent components. 6) The
interpretation of expressions that appear in address clauses, including those for interrupts.
7) Any restriction on unchecke conversions. 8) Any implementation-dependent
characteristics of the input-output packages. (21

The best method for determining the critical timing parameters is to analyze the code
within the runtime. The disadvantage is that often this information is needed in helping to
select the compiler, and often it is not provided until the selection has been made.

An example of an inadequacy in the runtime environment section is that it is difficult to
measure dynamic memory usap on som lem entan This is usually because the
documentation does not provide adequate details on how the runtime uses dynamic storage.

In summary, the current ompiler documentation ackin in the areas of critical timig
parameters and ruatime environment algorithms. This information is necessary to be able
to evaluate the compiler before selection and should be provided.

Problem Resoluion: (Short Term) By including the quality and completeness of the
compiler documentation in the evaluation of compilers, this will allow users to select the
implementations that have the level of documentation that is desired.

3.1.4 Validation

A -24-

Ada Technology Issues

Issue/Problem Definion: In general, the compiler implementor's thrust has been towards
validation of their compilers at the expense of poor optimization of its generated code,
configurability of its nmtime environment, or implementation of machine dependent
features.

Background: Validation is the process of checking the conformity of an Ada compiler to the
Ada programming language and of issuing certificates indicating compliance of those
compilers that have been successfully tested. [1] It should be emphasized that the intent is
only to measure conformance with the standard. Any validated compiler may still have
bugs and poor performance, since performance is not being measured by the validation
tests. [6]

To obtain a validation certificate a compiler implementor must exercise an Ada Compiler
Validation Capability (ACVC) test suite. The current level is Version 1.9 and it contains a
series of over 2500 tests designed to check a compiler's conformance to the DoD's Ada
language standard, SMIL-STD-1815A-1983. To date, compiler implementors have
been very concerned with obtaining the status of "validated" for their co pilers. Having a
validated Ada compiler is no longer just a markedn ploy, it is required by the DoD that
contractors developing Ada software must use a validated Ada compiler (DoD Directive
3405.2).

This information was supplied by the following sources: Project Interviews, and Current
Software Engineering Literature.

Analysis & Support: With the initial validation phase completed for most compilers, the
compiler implementors are shifting their emphasis to concentrate on improving the
efficiency of the generated code (code optimization) and providing more user
configurability of the runtime environment.

Validation issues have confused many application builders. Questions have arisen as to
whether or not similar, but not identical, hardware that was used for validation can be
considered validated. Other issues have appeared involving what constitutes "maintenance"
of a compiler, and how much of it can undergo change and still retain validation status.
Also, since Ada validation status is only retained for one year after validation, concerns
have been expressed for programs that do not want to change the version of their compiler
after they begin testing. New policies have been developed to support baselining a compiler
with respect to a project, and derii validation status for similarly configured machines.
Although there are still unresolved issues, the associated problems are minor and are
unlikely to adversely impact any development programs.

In summary, the real-time issues of performance, support for low-level operations and
decreasing runtime environment sizes have taken a back seat to obtaining a compiler
validation certificate.

Problem Resolution: (Short Term) The ACVC must be expanded to include all of the
Chapter 13 features. Information on the new validation policy should be provided to all
PMs and government contractors using Ada.

3.1.5 Proposed Ada Language Extensions

A-25-

Ada Technology Issues

In interviewing various engineers the following language features were desired but not
present in the current Reference Manual for the Ada Programming Lange: 1.) Support
for fast interrupts, 2.) Greater control of the Task Control Block (TCB), and 3.)
Asynchronous Task Communications. These features are explained further below.

3.1-5.1 Fast Interrupts

Issue/Problem Defmiidon: Fast interrupts are not explicitly supported by Ada.

Background: Support for fast interrupts would allow the application engineer to specify that
an interrupt tsfk will not require the runtime to perform a full context switch on interrupt
entry (Le. the interrupt task executes in the context of the currently active task). This is
necessary in-order to provide immediate response to hardware events.

This information was su lied by the following sources: Project Interviews, ARTEWG &
SIGAda Meetings, and nabTek Experience.
An ys, & Suppoirt Some compiler implementations provide this capability with an
implementation dependent PRAGMA.

Problem Reolution: (Short Term) The suggestion is to make this a standard PRAGMA.

(Long Term) Changes to the standard for the Ada Language (ANSI/M]L-STD-1815A) that
would alleviate problems encountered by real-time embedded systems should be
considered. Although making specific changes is beyond the scope of this study, a possible
candidate for evaluation is "Fast Interrupts".

3.1.5.2 Greater Control of the Task Control Block (TCB)

I sue/Problem Defzion: Application engineers are not able to manipulate the TCB in
most implementations.

BacAground: The task control block contains such information as: task priority, amount of
time allocated to a time slice, status of the task, etc

This information was supplied by the following sources: Project Interviews, and LabTek
Experience.

Analysis & Suppon. The application engineer would benefit if able to manipulate the task
control blok.. Thi is not a severe problem for most applications. The applications which
require this capability are the ones that are "tryn to w.ite operating systems in Ada. An
operating system wakes extemiv use of tasking and the ability to specify the time-slice
period, among other task characteristics, is desirable.

Problnm Resoutbion: (Long Term) Changes to the standard for the Ada Language
(ANSI/MIL-STD-1815A) that would alleviate problems encountered by real-nime
embedded systems should be considered. Although making specific chanses is beyond the
scope of this study, a possible candidate for evaluation is "Control of Task control Block".

A-6-

Ada Technology Issues

3.1.5.3 Asynchronous Task Communications

Issue/Problem Definition: The Ada rendezvous model uses a synchronous mechanism to
communicate between tasks. Many applications require that a signalling task not be
delayed until the signalled task is ready to accept the signal.

Background: The mechanism used to communicate between tasks in the Ada rendezvous
model is that both tasks must be synchronized together before any data or control
information can be transferred. This is dissimilar to the conventional mailbox techniques
utilizing P and V semaphores to provide inter-task communications.

This information was supplied by the following sources: Project Interviews, ARTEWG &
SIGAda Meetings, and LabTek Experience.

Analysis & Support: The argument for the Ada model is that it provides a unified approach
for both data communication and generating events (signalling). However, many
applications require that a signalling task not be delayed by waiting while the signalled task
is notready to rendezvous.

Problem Resolution: (Work-Around) The Ada solution to this issue is to p lace an
i.rtermediate task between the signalling task and the waiting task. This intermediate task
would always be ready for a rendezvous and would effectively buffer the transaction to
effectively provide asynchronous communications. The impact is to create an additional
(logical) context switch. In the absence of an optimization which would eliminate the need
of this additional context switch, the approach is not suitable for time critical applications.
The combination of supporting fast interrupt tasks and asynchronous signals makes this
optimization difficult for general use.

(Long Term) Changes to the standard for the Ada Language (ANSI/MIL-STD-1815A) that
would alleviate problems encountered by real-time embedded systems should be
considered. Although making specific changes is beyond the scope of this study, a possible
candidate for evaluation is "Asynchronous Task Signalling".

3.1.6 Chapter 13

Ime/Problem Deinidon: Many of the features in Chapter 13 are not implemented in
current commercially available compilers today.

Background: Chapter 13 of the Reference Manual for the Ada Pro m Laguage is
titled, "Representation Clauses and Implementation-Dependent Features". The Ada
Compiler Validation Capability (ACVC) test suite does not thoroughly test features
contained in this chapter. These features are optional and therefore a compiler can have
the status of "validated" without any of these features implemented. However, many people
feel that Chapter 13 is required for real-time embedded applications.

This information was supplied by the following sources: Project Interviews, ARTEWO &
SIGAda Meetings, Current Software Engineering Literature, and LabTek Experience.

Anaysis & Support: There is an inherent dilemma in the design of a high-order language
with a systems programming capability. On the one hand the language designers are utying
to achieve reliability by raising the level of the language. For example, they provide data

A -27-

Ada Technology Issues

types and encourage the taking of an abstract view of objects, in which they are known only
.by the set of operations applicable to them: controlling the applicable operations enables
incorrect usage to be detected. On the other hand, systems applcations require the ability
to stay rather close to the machine, and not only for reasons of efficiency. For example,
defining a hardware descriptor must be done in terms of the physical properties such as the
bit positions. A mapping different from that prescribed by the hardware would not merely
be inefficient, it would be incorrect and would not work. To produce a correct program in
such ca the application engineers are forced to abandon the abstract view and to work in
terms of the physical representation. This contradiction cannot be avoided. The language
must deal with objects at two different levels, the logical and the representation level (3J.
That is the purpose of Chapter 13 of the Reference Manual.

In summary, fifty percent of the projects interviewed reported that a lack of Chapter 13
features implemented in their version of the compiler posed a serious problem.

Problem Resolution: (Short Term) As mentioned above under Validation, Chapter 13
features must be tested by the ACVC. Consideration should be given to making the
Chapter 13 features mandatory for compilers used for embedded systems development.

3.2 Softwr Development Activities and Related Tools

Software development of a real-time embedded application is essentially comprised of three
major phases - a concept definition phase, a development phase, and a deployment and
operational phase In the concept definition phase (the initial or early life-cycle phase),
requirements are identified, an iitended performance envelope is stated and statements of
needs are written. The development phase primarily consists of the design, code and test
activities concerned with the system implementation. The deployment and operational
phase consists of the important maintenance and support activities required to complete the
final or last phzse of the life-cyde. [10]

It is important to point out that although the life-cycle phases imply that when one phase
ends the next phase begins, in practice, there is substantial iteration between the phases.
For example, ff in the implementation phase a discrepancy is apparent, then it becomes
necessary to go back to the design phase and make any modifications that are needed.

Following is a general problem resolution which covers the area of software development
and related tools. It can be applied to most of the subsections under section 32.

Problem Resow ion: (Long Term) The proper selection and use of tools is the greatest hope
for improving the quality and lowering the cost of developing software. Although "software
engineering methodologies' are conceptually the answer to many development problems,
experience has shown that it is the tools that drive how engineers develop software. If a
methodology is embodied within a tool that is perceived as being useful, then the
methodology will be followed. In the absence of such tools, to get large groups of engineers
to all use the same methods is nearly impossible. For this reason, the development of
public domain software tools should be supported to the maximum degree possible.
Already the WIS (WWMCCS hn'ormaden System) program has supported the development
of a set of tools through the Naval Ocean Systems Cenier. These tools have been placed in
the Ada repository on the ML-NET at S34TEL20 and are available to US corporations.
Although these tools are not yet production quality, there are efforts underway to fund their
upgrading and maintenance. This activity should receive the full support of the services. It

A-28-

Ada Technology Issues

may be possible to set up a program whereby tools that are taken from the repository and
improved by users can be repurchased by the government to place the improved version
back into the repository. Iis would provide the best of both "commercial off the shelf" and
"government ownership" approaches to providing software for government projects.

The following sections apply to the general problem resolution of tool development:

reference section 3.2.1, "Requirements Analysis"
reference section 3.2.1.1, "Rapid Proto Ting"
reference section 3.2.1.2, "Requirements Tracing
reference section 3.2.2, "Configuration Management"
reference section 3.2.3, "Design"
reference section 3.2.3.1, "Flow Diagrams"
reference section 3.2.3.2, "Program Design Language (PDL)"
reference section 3.2.4, "Documentation"
reference section 3,2.5, "Implementation"
reference section 3.2.6, "Integration"
reference section 3.2.6.1, "Debuggers"
reference section 3.2.6.2, "Simulation7
reference section 3.2.6.3, "Automatic Regression Testing"
reference section 3.2.6.4, 'Test Verification Matrix"
reference section 3.2.6.5, 'Test Generation Assistance"
reference section 3.2.7, "Maintenance"

3.2.1 Requirements Analysis

Issue/Problem Deftiion: Several tools exist to help identify the requirements of a software
system. However, these tools do not always integrate well with the other support tools for
requirements tracing and configuration management.

Background: Requirements are precise statements of need intended to convey
understanding about a desired result. They describe the external characteristics, or visible
behavior of the result, as well as constraints such as performance, reliability, safety and cost.
Analysis is the systematic process of reasoning about a problem and its constituent parts to
understand what is needed or what must be done. [8]

The requirements analysis process defines the system's functional requirements (functions,
inputs, outputs), external interface requirements (e.g. user interface), and performance, and
other requirements such as security. [13]

This information was supplied by the foUowing sources: ARTEWG & SIGAda Meetings,
Current Software Engineering Literature, and LabTek Experience.

Analysis & Suppor. Some of these tools require specialized hardware to support graphics
interfaces which are used to help visualize the structure of the software. Often the tools are
cumbersome to use, and because no standard ost training is a major problem with using
the tools and the documentation that they generate. These problems are largely language
independent. Therefore the only impact related to Ada is the trend towards
standardization.

A-29-

Ada Technology Issues

In summary, the capturing of requirements is language independent The problems arise
because there are tools for each aspect of software development and these tools are not
integrated to work well together.

Problem ResoltMon: (Long Term) If tools can be developed in Ada for use in many
development environments, then the availability of common requirements definition tools is
a likely by-product.
Also see the general problem resolution under 'Software Development Activities and
Related Tools" above.

32.1.1 Rapid Prototyping

Issue/Problern Deflnition: The Ada language does not directly support rapid prototyping.

Back ound: Software prototypingis a process (the act, study, or skill) of modelling user
requirementr in one or more levels of detail, including working models. Project resources
are allocated to produce scaled down versions of the software described by requirements.
The prototype version makes the software visible for review by users, designers and
management. This process continues as desired, with running versions ready for release
afer several iterations. [15]

This information was supplied by the followimg sources: ARTEWG & SIGAda Meetings,
Current Software Engineering Literature, and LabTek Experience.

Analysis & Support: Ada is designed to support large applications where the interfaces
between the modules must be rigidly defined in advance of their use. Ada forces users to
"think before they code", which is beneficial for application code development, but not
always expedient for rapid prototyping. When Ada interfaces change, the impact ripples
back to units using those interfaces. This makes down-stream changes to the code less
than "rapid*. Since the nature of rapid prototyping is to flush out different design ideas, the
design and code tends to iterate on a week by week basis.

In summary, the rapid prototyping that is discussed here is the "throw-away" type. It is
generally used to obtain information on system performanceor to test certain design ideas,
and is discarded after it has served its purpose. As pointed out above, this process may not
be as rapid in Ada as some other languages.

Problem Resoltion: (Work-Around) The overhead in modifying the Ada interfaces must be
reduced in order to prevent this activity from consuming an inordinate amount of time.
Clever reuse of packages, especially penerics may help alleviate this problem to some
deree. Fast, interpretative Ada envtronments can also make the design chanes less
painful. Since rapid prototypes tend to be small in comparison to the application, the
difficulties in using Ada to do rapid prototyping can be managed.

Also see the general problem resolution under "Software Development Activities and
Related Tools above.

3.2.1.2 Requirements Tracing

A -30-

Ada Technology Issues

Issue/Problem Dfinition: Requirements tracing is not new to Ada, and is only included
here for completeness.

Back$round: Requirements tracing is the practice of providing a documented allocation of
requirements from the highest level specification down to the code section that satisfies
those requirements. This is done to provide a measure of assurance that all of the
requirements have been met and tested. It is also useful when requirements change and it
becomes necessary to re-evaluate portions of a program for impact. If requirements are
eliminated, then those code sections may be able to be reduced or removed entirely. In
cases where new requirements are added or "clarified", the related code sections can be
found quickly (in theory) and be updated.

This information was supplied by the following sources: ARTEWG & SIGAda Meetings,
Current Software Engineering Literature, and LabTek Experience.

Analysis & Support: The standardization of Ada as a PDL (program design language) and
as an implementation language does make tool generation to support requir ements tracing
through these phases more practical. Standard requirements keywords within the PDL can
serve multiple purposes. If the C5 level specifications are automatically generated from the
PDL this provides an input into that documentation. Since the Ada code can be included
within the same file as the PDL, the same keywords provide traceability down to the code
sections.

In summary, requirements tracing can be facilitated by Ada. If Ada is used as the PDL and
as the implementation language, the generation of this requirements tracing tool becomes
easier.

Problem Resolution: (Long Term) Work needs to be done to help link the high level
specifications to the PDL

Also see the general problem resolution under "Software Development Activities and
Related Tools" above.

3.2.2 Configuration Management

Issue/Problem Deinition: Difficulties exist because of a lack of commonality of tools.

Background: A configuration item is a collection of hardware or software elements treated
as a unit for the purpose of configuration management. Configuration Management (CM)
is the process of identifying and defining the configuration items in a system, controlling the
release and change of these items throughout the system life cycle, recording and reporting
the status of configuration items and change requests, and verifying the completeness and
correctness of configuration items. [11]

This information was supplied by the following sources: Current Software Engineering
Literature, and LabTek Ex erience.

Analysis & Support: Tools that process Ada source, such as the Ada compiler or PDL
processor frequently maintain their own library of compilation units. This Library usually
contains a variety of file formats, and problems may arise when attempting to place the
library under configuration management. Since the library can theoretically be regenerated

A-31.

Ada Technology Issues

by reprocessing the Ada source code, "typicalU only the source code is placed under

configuration management. This is generally satisfactory provided that a mechanism exists
to verfy that the same command line options are used to invoke the tools. Ideally the
entire library should be placed under CM for each major release.

Some tools are only available on graphics-based workstations, while the compiler may only
be available on a mainframe computer. Maintaining consistent versions of all development
materials can be extremely tedious under these circumstances. Some tools allow conversion
of internal file formats to less efficient printable ASCII formats. This facilitates placing all
confguration items into a common, machine readable database.

In summary, tools for different phases of the software life-cycle are often made by different
vendors, so they are not usually integrated with each other. This has always been a
problem.
Problem Resolution: See the general problem resolution under "Software Development
Activities and Related Tools" above.

3.2-3 Design

Imue/Problem Definition: Designing a system in Ada is not seen to be a problem. However,
the time required to design a system in Ada is significant and must not be overlooked
(especially if training of personnel is needed).

Background: Design is the process of applying various techniques and principles for the
purpose of defining a device, a process, or a system in sufficient detail to permit its physicalrealization.

This information was supplied by the following s6urces: Project Interviews, and LabTek
Experience.

Ar alysis & Support: Ada facilitates the design process. Once the design is captured in an
Ada PDL (Program Design Language), Ada consistency checking helps to verify the
meeting of design requirements.

Problem Resolution: (Short Term) The design phase can be improved by the following
recommendation: Managers should modify their schedules to allow more time in the
beginning of the development phase for software definition. Ada designs generally develop
slowly but the coding and debugging phases tend to proceed more smoothly (provided the
tools are adequate). Also, there is a need to provide better guidelines for use of an Ada
PDL

(Long Term) There is still a need for design methodolojies and tools that help to capture
soitware requirements in a format suitable for an Ada implementation and to propagate
these requirements in a form suitable for input into the PDL processor. One of the most
difficult areas in systems design of DoD projects is the constant changing of requirements.
Tools are necessary to help lessen the impact of this problem in Ada software systems.

Also see the general problem resolution under "Software Development Activities and
Related Tools" above.

A -32-

Ada Technology Issues

3.2-3.1 Flow Diagrams

Issue/Problem Defliion: Problems associated with generating and interpreting flow
diagrams are not unique to either Ada or real-time programs, and are only included here
for completeness.

Background: Flow diagrams are used to graphically depict the data flow and control flow of
programs. These graphic representations help convey the operation of programs so that
high level interpretations can be made in a relatively short time.

This information was supplied by the following sources: ARTEWG & SIGAda Meetings,
Current Software Engineering Literature, and LabTek Experience.

Analysis & Support: Flow diagrams are mentioned here for completeness, and to suggest
that the transportability of Ada based tools make the development of a tool that could
generate flow diagrams more cost effective. Although flow diagrams are most useful during
the concept definition phase of software development, they are often helpful during
subsequent phases for documentation purposes. Unfortunately, due to the difficulty in
generated these diagrams, they are all too frequently not kept up to date with the design
and code.

In summary, Ada can facilitate the generation of flow diagram tools, due to its
transportability.

Problem Resolution: (Long Term) The standardization of Ada may make it practical to
build a tool that would automatically generate various levels of flow diagrams from the Ada
source code. This would provide the most accurate source of graphic documentation and
would benefit those maintaining the programs.

Also see the general problem resolution under "Software Development Activities and
Related Tools" above.

3.2-3.2 Program Design Language (PDL)

Isue/Problem Definition: PDL issues are not unique to real-tine applications, or Ada,
except for the possible concern about restricting some Ada features inthe PDL because of
execution time performance penalties.

Background: Program design languages are used to provide a high level representation of a
program in a more rigorous fashion than either natural language or flow diagrams. With
the adoption of Ada as the standard basis for PDLs, the additional features of beig able to
verify interfaces and showing dependencies, become available simply by processing the PDL
with an Ada compiler.

This information was supplied by the following sources: Project Interviews, ARTEWG &
SIGAda Meetings, Current Software Engineering literature, and LabTek Experience.

Analysis & Support: The conflict arises when Ada is being used for both the PDL and the
implementation language. There is a concern that if the designer stays at a high level (as
they should) in the PDI that the implementor will use an inappropriate construct in Lhe
code. This is further complicated if the PDL and code are never separated, but remain

A 33-

Ada Technology Issues

within a single file. An example is that record types with default discriminants may be ideal
for being able to change the representation of input buffers, however, due to the
performance issues associated with this construct, it is probably not ideal for the
implementation code.
Problem Resoluion: See the general problem resolution under "Software Development
Activities and Related Tools" above.

3.2.4 Documentation

I.ue/Problem Deinition: Ada tools such as PDL processors claim to support automatic
generation of some specifications and software documentation. To a large degree, the
output of these tools is somewhat less than satisfactory with respect to being complete.

Background: Software documentation is technical data or information, including computer
lisin&s and printouts, in human-readable form, that describe or specify the design or details,
explain the capabilities, or provide operating instructions for using the software to obtain
desired results from a software system. (111

This infdrmation was supplied by the following sources: ARTEWG & SIGAda Meetings,
Current Software Engineering literature, and LabTek Experience.

Anakysis & Suppor: The output of these tools does have the benefit of accurately tracking
the PDL, and thus the implementation. This is important since when changes occur in the
implementation, they are much more likely to be reflected in the C5 level specifications.
The quality of the output of these tools is highly dependent upon the correct wording of
PDL Training is necessary to assist PDL developers so that the output is complete and
consistent.

Problem Resolution: (Long Term) As always, the ability to generate quality graphics and
text is important to the comprehension of design information. Many tools can support large
documents, or graphics, but not both. Even when they support both, they may not work well
with the configuration management tools. Since Ada is being recommended as the standard
PDL, this helps to lend support to tool development to process PDL for documentation
support. Work is needed to provide integration among interacting tools.
Also see the general problem resolution under "Software Development Activities and
Related Tools" above.

3.2.5 Implementaton

Imue/Problem Deiniion: The improper use of Ada features can create performance
problems in an implementation.

Background: The implementation phase is the period of time in the software life cycle
during which a software product is created from a design document and debugged. 11]
Although the diagram of a software life cycle commonly shows phases following sequentially
fr'om each other, in actality it is usually necssary and desirable to have some iteration
between them. In addition, there i. often si ant overlap between phases. [131 A good
background in software engineering pracces is probably necessary to use the hull

A -34-

Ada Technology Issues

capabilities of the language - simply teaching professional programmers Ada is not enough.

This information was supplied by the following sources: Project Interviews, and LabTek
Experience.

Analysis & Support: Although support tools are needed in all phases of software
development they are discussed briefly under "Implementation7 because hitorically this isthe phase that has been most influenced by tools. Supboe tools include the compilation
systems, editors, assemblers, linkers, locators, loaders, librarians, pretty-printers, etc.. that
allow an engineer to input source code and generate executable machine code. Software
support tools are also needed for debuggi configuration management, documentation
generation, PDL processing, rapid prototyping. simulation and test support. The acquiring
of a good toolset is important for the success of a project, and can reduce software
development time significantly. Editors, assemblers, linkers, locators, loaders and librarians
have been available for sometime and do not present substantial problems. The problems
Lie in the immaturity of Ada compilation systems, and the lack of debuggers and other
support tools for them.

In sunmmary, when implementing an Ada design for a real-time embedded system. care
should be taken to insure that the appropriate Ada constructs are used, and that the code
generated by the implementation does not require excessive time to execute.

Problem Resolution: (Short Term) It is hoped that a software engineer will study the
problem and language constructs sufficiently before implementation to decide what features
of the language should be used to best handle the problem at hand.

Also see the general problem resolution under "Software Development Activities and
Related Tools" above.

3.2.6 Integration

Issue/Problem Definition: No problems specific to Ada have been identified in this area and
this section has been included only for completeness.

Background: Integration is the process of combining software elements, hardware elements,
or both into an overall system. [111

This information was supplied by the following sources: Project Interviews, Current
Software Engineering Literature, and LabTek Experience. Reference section 4 for the
Issue Vs. Source Matrix.

Analysis & Support In Ada, integration generally proceeds more rapidly partiall due to its
strong typing mechanism. Many errors that typically would not be caught until execution
time in other languages are often caught at compilation time in Ada. [7]

Problem Resolution: See the general problem resolution under "Software Development
Activities and Related Tools" above.

-35-

Ada Technology Issues

326.1 Debuggers

Itue/Problem Definition: Current in-circuit emulators operate (at best) as symbolic
debugers, and have no provisions to support real-time momtoring of dynamically allocated
variables.

Background: Debugging refers to the process of removing errors from computer programs.
Although debugging can and should be an orderly process, it is still very much practiced as
an art. A software engineer, evaluating the results of a test, is often confronted with a
symptomatic indication of a software problem. That is, the external manifestation of the
error and the internal cause of the error may have no obvious relationship to one another.
The poorly understood mental process that connects a symptom to a cause of a software
problem is debugging. [9]

A debugging approach can be supplemented with debugging tools (often called debuggers).
Debuggers are available in a wide variety, the most useful being dynamic debugging aids
and automatic test case generators. Memory dumps and cross reference maps also aid the
debugging process.

This inf6rmation was supplied by the following sources: Project Interviews, and LabTek
Experience.

Analysis & Supporn An in-circuit emulator (ICE) allows code to be traced as it is executed
without interfering with the real-time nature of it. That is, an ICE is a hardware
substitution of the processor which supports real-time monitoring of the processor's
activities. Emulators generally have capabiliUes to halt execution on user-programmable
events, such as a write to a specified memory address. When the event occurs, a halt is
generated, and the user has the ability to examine the previous instructions that lead up to
the event (trace-back). This type of feature makes it possible to detect design errors that
cause data to be corrupted by incorrect memory writes.

One of the side benefits of emulators is their ability to emulate the memory of the
embedded system, and thus relieve the necessity to continually program new PROMs
(Programmable Read-Only Memories). The emulator uses its read/write memory to
substitute for the PROM, tus making the process of loading a program for execution much
faster. Emulators also proide capabilites to profile program execution, which aids in
determining which code sections should be optimized.

Current emulators operate (at best) as symbolic debuggers. This implies that the user has
the ability to acess certain symbols" such as variable names, subprogram names, etc.. The
symbol tables are generated by the compiler or assembler and provided to the emulator,
usually along with the binary code through a down loading process over a data link. What is
missing is the ability to operate on a source code level with emulators. Ideally, the user
could specify a source statment line number at which the program should halt, and when
the program does halt, have the same naming conventions and scope (possibly extended) of
the program at that point in its execution. Single stepping of the progzn at the Ada source
level is an extremely useful feature when trying to isolate diflqult design errors. Often the
hardware is new, and it operates either incorrectly, or in a way that is not rerdecte, in the
documentation. By stoppmn program execution at the points at which it interacts with the
hardware, the user can qumckly locate causes of failure. By not supportin source level
operation, the Ada programmer is often forced to study the generated assembly language

A -36-

Ada Technology Issues

code in order to resolve where to set break points, or to examine memory. This can be
extremely tedious in situations where extensive optimization has been done on the
generated code. Register assignments are not always obvious ani reordering of the code
can be very confusing.

Software debuggers are tools that support debugging without the aid of external hardware.
Software debuggers on the other hand, do insert code into the executable module to
produce a debugging version. Thus the debugging version and the real-time version are not
the same executable modules. The overhead of a software debugger is usually not incurred
with an ICE. Several manufacturers now provide powerful software debuggers that provide
source level debugging The application code is loaded into the target along with a debug
support module. Thismodule provides a communications interface to the host computer
and the capability to set break points and examine memory. The user communicates
directly to the host computer via a standard video terminaL The host computer is in turn
connected to the target system. All communications between the user and the target are
routed through the host computer debug support software. This allows the user interface to
be very complex, including source level single stepping, yet the software loaded into the
target is very simple, keeping it small. The main drawback is the loss of a trace-back and
setting break points on certain types of events, such as memory writes to specific locations,
for real-time execution.

In summary, what is desired for debugging is an in-circuit emulator with the features of
advanced software debuggers, such as source level operations.

Problem Resolution: (Long Term) An emulator that supports a source level debugger would
provide the ability to trace a particular variable, procedure, etc., in real-time. Tools to
support in-circuit emulation are provided by third party vendors (i.e. not the compiler
vendor), and the changes made in compilers are not supported immediately by the third
party vendors. Hardware changes in the emulators may be necessary to support the
dynamic nature of objects in Ada. For example, settin break points normally requires
specifying a particular address (or range of addresses) with the emulator. However, since
storage for data within procedures is allocated and deallocated dynamically at execution
time of the procedure, it is impossible to know the exact memory address of the data prior
to invoking the procedure. What may be required is the ability to establish an "arm"
capability which detects entering a subprogram, and can calculate a data frame offset
address at that time and set a break point based on that addrss. When the subprogram is
exited (for any reason) the break point must be disarmed, since the memory address will be
reused by the next subprogram.

The next generation of microprocessors appear to be helping to resolve this problem. They
expect to be operating above the 30MHz mark where providin& emulators is unlikely to be
practical. The industry speculation is that new processors will contain on-chip logic to
provide some of the features currently provided by emulators. In these environments, the
debuggers are likely to be software driven.

Also see the generm problem resolution under "Software Development Activities and
Related Tools" above.

3.2.6.2 Simulation

A-37-

Ada Technology Issues

Issue/Problem DeIn.n: Simulation poses no new additional problems with respect to the
Ada language. It is included here only for completeness.

Back ground: In software test environments, simulation is used to substitute for the real-life
environment in which the application will operate. Often, various elements of the hardware
are not available at the beginning of software/hardware integration, and it is necessary to
simulate not only the external events, but ieces of the system as well. One of the
advantages in using simulators is that usualy they provide additional control over the
environmental events that can not be achieved with the real system. For example, it may be
impossible to test a helicopter at Mach 4, however simulators may allow the generation of
data and events to test the software under the conditions that would be present if the
helicopter could achieve Mach 4 flight. Simulators also assist in support of automatic
testing. Programmable simulators can be set up to provide a scenario, and test support
equipment can collect the responses of the software being tested. In this way many tests can
be run in a much shorter time than what would be required to run real operational tests.

This information was supplied by the following sources: Project Interviews, and LabTek
Experience.

Analysis &'Suppor:. The obvious drawback of simulators is the accuracy to which they can
simulate the real world events. Many simulators have the capability to playback recorded
real world events that were logged during real operational missions or tests. This allows
recreation of faults that are otherwise extremely difficult to isolate and repair. Even so, it is
almost impossible to recreate the exact actual environment, lttle details such as clock
rates that vary slightly over time can cause an interrupt to be handled at a different time
during playback. Once the responses of the computer change, it becomes extremely
difficult for the simulator to compensate and to adjust the playback data to correct for the
altered behavior.

The degree of accuracy of a simulator directly effects its usefulness. It also usually effects
the cost of the simulator. That is, simulators that do not accurately reflect the operation of
the real system can do more damage than good, and simulators that very accurately reflect
the real system tend to be very costy to build.

In summary, with the nportabity of Ada, it is now sometimes easier to implement a
simulator, since the operational code that would normally drive the real system can now be
transported to a s r with less effort in many cases. In this way, pieces of incomplete
hardware can be substituted for by similar computers running the same code that the real
hardware will run. This does not help solve the (perhaps more difficult) problem of real
world environment simulation, but since the proliferaton of microprcessrs Is so
pervasive, many computers within weapons systems dedicate a large percentage of their
control software to communications with other computers, and therefore a corresponding
percentage of the software can be tested using a computer to simulate the commucanons.

Problem Resoluion: A problem resolution is not required here.

See the general problem resolution under "Software Development Activities and Related
Tools" above.

A .38-

Ada Technology Issues

3.2.6.3 Automatic Regression Testing

,ssue/Poblem Definition: Automatic Regression Testing poses no new additional problems
due to the Ada language. It is induced here only for completeness.

Background: Regression testing is the selective retesting to detect faults introduced during
modification of a system or a system component, to verify that modifications have not
caused unintended adverse effects or to verify that a modified system or system component
still meets its specified requirements. (11]

This information was supplied by the following sources: Current Software Engineering
Literature, and LabTek Experience.

Analysis & Support: The process of regression testing often consumes a substantial portion
of the effort for large applications that undergo many releases over their lifetime. In the
absence of proper tools, regression testing is frequently incomplete and therefore it is not
uncommon to have software regress. That is, in the release that fixes one error, other errors
are introduced in functions that previously worked correctly. Most development
environments do not have adequate facilities to automatically capture and re-run tests that
were used to verify the initial system capability.

In summary, the transportability of Ada may provide the foundation upon which testing
tools can be developed and provided to a wide group of contractors. The major difficulty is
the intimate interfaces required to drive simulators in support of the testing. Since the
simulators often operate in real-time the interfaces are often customized to a large degree.
Provisions must be made within automatic testing tools to allow reconfiguration and
customization of these interfaces.

Problem Raolution: See the general problem resolution under *Software Development
Activities and Related Tools" above.

3.2.6.4 Correlation to Specified Test Verification Matrix

Isue/Problem Definition: No additional problems are imposed by the use of the Ada
language with respect to correlation to the specified test verification matrix. It is included
here only for completeness.

Background: A traceability matrix maps the software modules to the requirements. Each
module, in turn, must have a test to show that it meets the reuirements and a test
verification matrix can be constructed. If a module is discovered which cannot be matched
to a requirement, then that discrepancy should be resolved by eliminating the module or
updating the matrix (16]

This information was supplied by the following sources: Current Software Engineering
Literature, and LabTek Experience.

Analysis & Support:. Typically the verification matrix is not machine processable other than
through a document formatter. A need exists to have the verification matrix be generated
automatically from the raw input to the specifications, and to have a form of the matrix be
used with the automatic test tools to insure that each test is verified. Use of specialized

&39-

Ada Technology Issues

comments within the raw (pre-formatted) text of specifications can identify the mandated
requirements and also which test phases and how they will be verified.

In summary, the use of Ada, and standard software development guidelines
(DoD-STD-2167A) should facilitate the development of tools to process the specification
documents and provide the above capabilities.

Problem Resoluion: See the general problem resolution under "Software Development
Activities and Related Tools" above.

3.2.6.5 Test Generation Assistance

Ismue/Pblem Defnton: There are. no new problems associated with test generation
assistance due to the Ada language. It is included here only for completeness. However,
tools that generate test cases may need to be more complex to support the parsing of Ada
programs unless they operate from an intermediate representation of the source Ada
program.

Bdckgrodnd: Test generation assistance is a software tool that accepts as input a computer
program and and test criteria, generates test input data that meet these criteria, and,
sometimes, determines the expected results. (11]

Testing within the context of software enie is actually a series of four steps that are
implemented sequentially. Initially, tests ocus on each module individually, assuring that it
functions properly as a unit, hence unit testing. Next, modules must be assembled or
integrated to form the complete software package. Integration testing addresses the issues
associated with the dual problems of verification and assembly. Finall, validation
requirements (established during the planning phase) must be tested. Valdation testing
provides final assurance that software meets all functional and performance requirements.
The last step falls out of the software engineering category and into the computer system
engineering category. System testing verifies that all elements mesh properly and that
overall system function and performance are achieved. (91
This information was supplied by the following sources: Current Software Engineering
literature, and LabTek Experience.

Analy* & Support. Tools already exist within the Ada software repository which will
instrument Ada source code and count the times each path is executed. Although this is not
sufficient for many real time systems it does provide a baseline for verifying that each path
has been executed. This can be a benefit to see if the test generation tool is providing
sufficient test coverage to check all paths. Additional tools are required to assist in
producing test cases.

In summary, this issue, like many other areas in software development is not unique to Ada,
but may benefit from the common support of Ada for tool transportability.

Problem Rsok-aton:See the general problem resolution under "Software Development
Activities and Related Tools" above.

A-40

Ada Technology Issues

3.2.7 Maintenance

'Tsue/P.roblem D'inition: There haven't been any serious problems identified in this area,
largely due to the lack of longevity of Ada.

Background: Software maintenance is the modification of a software product after delivery
to correct faults, to improve performance or other attributes, or to adapt the product to a
changed environment. [11]

This information was supplied by the following sources: Project Interviews, current
literature, and LabTek Experience.

Ana4ys & Support- Where Ada code has been maintained for some period of time, three
minor issues have arisen. The first is the conversion from subset compilers to validated
compilers. In some cases features available in the subset compilers became unavailable in
validated compilers. Also, interpretations of the language reference manual have changed
slightly effecting the validity of some programs. These issues are believed to be very short
term, jand of no significant consequence. The last issues that has been discovered by most
developers when working on projects with more than a few thousand lines of code, is that
the Ada USE clause should not be specified for any packages other than those predefned
in the language. The reason for this is because of the difficulty in tracing the origin of the
object or type definitions. Without an intelligent editor, it is extremely hard to locate which
package an object was declared in when many context (WITH) clauses are used.

Problem Resolution: The general problems associated with maintenance of software will
benefit by the greater use of automatic tools. See the general problem resolution under
"Software Development Activities and Related Toolse above.

3.3 Management & Policies

The following sections discuss the problems encountered by management in preparation of
an Ada contract. Among the issues concerning management are: proposal development
resource allocation, software reuse policies, and training of personneL

3.3.1 Proposal Development

!sue r oblem D<non: Sufficient time and analysis is not always spent during proposal
development, especialy regarding the impact of using Ada for the first time.

Background: The complexity and size of software Msystms, and their role in weapon systems
has been increasing dramatically in recent years. Many contractors do not Mly appreciate
the difficulties associated with developing the software for these more complex systems.
When little or no experience in using Ada exists within a company, the tendency is to
assume that Ada is simply another language and that using it will have no impact on
development.

This information was supplied by the following sources: Current Software Engineering
Literature, and LabTek Experience.

Analysis & Support Software is frequently given less analysis than the corresponding
hardware components. Estimation of the development effort remains largely guesswork

A-41-

Ada Technology Issues

and prone to underestimation. The impact of working towards imxnossible schedules that
can not be changed until they become absolutely absurd is severe. Engineers are forced to
start coding prior to understanding the requirements, let alone having a completed design.
A tradeoff must be made between legislating the time it takes to develop a program and
allowing the development to proceed indefinitely.

Problem Resolut'on: (Short Term) Contractors should justify their use of Ada and
demonstrate that they understand the impact of using Ada and are prepared to support the
transition to Ada.

(Short Term) The proposal phase should be expanded to include more effort on analyzing
the software complexity and estimation of the corresponding development activity. The
whole process of providing schedules needs to be studied.

3.3.2 Resource Allocation

Isse/Problem Defintion: The resources for an Ada project are quite different from other
software efforts and this must be taken into account.

Backgrouhd: Resources for a software project include computer resources, software
resources, and human resources.

This information was supplied by the following sources: Project Interviews, and LabTek
Experience.

Analys&i & Suppor.t Additional hardware resources are required for development due to
the mere size of the compilers and support tools. Due to the inter-dependencies of Ada
program units, many recompilations impose a larger workload on the development system.
In addition, extra human resources are needed to deal with problems associated with
learning and using new tools.

Problem Resolaion: (Short Term) The learning curve associated with a completely new,
complex tool set must be taken into account during proposal and early planning phases.

(Short Term) Related to the proposal phase above, the lanning of what ersonnel,
computer and facility, resources will be required is essentiaL ontractors should te given a
lead-time" that notifies them at lent three months prior to when work is to begin, to
prepare for the contract. Due to the uncertainties of government contrac-s, it often
happens that in one month a contractor has an excess of software enineers, and in the next
month they have a requirement for two hundred more. Even when it is possible to hire the
people, preparing facilities for them is often a time consuming process, especially when
secunty issues are involved.

(Short Term) Managemen within many DoD contractors needs to be advised of reports
that indicate improved cost effectiveness of providin two-person office environments with
terminals and work tables for each engineer. It is astonishing that contractors seem
perfectly willing to pay consultants more than what the United States Secretary of Defense
makes, and yet supply them with a small desk in a large crowded room full of ringing
phones; then expect them to be able to design the most complex software system in the
world.

A-42-

Ada Technology Issues

3.3.3 Reusable Software

Issue/Problem Deition: Several difficulties arise in the reuse of software, including:
locating the software for reuse, providing documentation that is compatible with the
remainder of the system, legal and financial issues, and understanding, modifying and
testing the software to operate in the new environment.

Backround: Software reuse is the extent to which a module can be used in multiple
applications. Once it is located, it must be understood. Building something out of parts
that are not understood is difficult (and undesirable!). This is especially true for real-time
software where the timing characteristics are determined by the analysis and understanding
of a program's operation.

This information was supplied by the following sources: Project Interviews, Current
Software Engineering Literature, and LabTek Experience.

Anaysi & Support. To be reusable, a software routine needs to fit into the total system:
that requires much more than just the program code. Documentation, specifications, design
history, test plans and data, and all the other thing required of the total system must be
available for this component. In too many cases the work of finding and reusing is more
than that of reinventing, but that leads to a world where everything is custom made and
unique; something that cannot be afforded in today's large systems. [16]

Probably more difficult than the technical issues are the legal problems associated with
software reuse. Who owns the software components? Who is responsible for their correct
behavior? How should the owners be compensated? How can contractors be rewarded for
the ultimate savings associated with software reuse?

Developing reusable software for real-time systems is particularly difficult since the
optimizations often require taking advantage of the specific hardware. Also, contractors
maximize profit when developing software in the most expedient fashion, rather than
expending the extra effort and cost to design it for reuse. The recipients of reuse are most
likely other contractors, and not necessarily the original developer.

Problem Resoluaion: (Short Term) Recent discussions with the STARS (Software
Technology for Adaptable, Reliable Systems) office indicate there is an intention to
upgrade and expand the software repository on SBMTEL2O (ARPANET). The majority of
this software however, is related to tools and not real-time software.

(Short Term) Reusable software must be designed for reuse in mind. This implies a need to
know what -ariances are allowed in different Ada implementations and and understanding
of the concepts of Ada packaging. Al, a mechanism must be developed to measure the
ability to reuse a particular piece of software before the reuse effort begins. This will
provide a level of confidence that the reuse effort will be successftl and will help to
eliminate the concerns established by previous attempts at reuse, only to result in a wasted
effort and a need for a total rewrite.

(Short Term) There is a need to provide a transportability handbook for Ada to assist
engineers in this effort.

A -43-

,da Technology Issues

(Long Term) The government iould establish a policy that rewards contractors for
producing software that is reusac.e by other contractors. This is contrary to their natural
tendencies and will require substantial wisdom to develop.

3.3.4 Training

Issue/Problem Definition: In addition to the usual Ada/Software Engineering training that
is required, there is a general lack of knowledge about Ada runtime environments (RTEs)
in the user community.

Background: Ada training takes on several forms ranging in effectiveness and cost. The
forms of training are: on the job training, college level courses, self-paced video tape
lectures and computer aided instruction, and concentrated two or three week courses given
by professional instructors. It is generally held throughout the Ada community that courses
teaching the language without hands-on programming assignments are of little value.

This information was supplied by the following sources: Project Interviews, Current
Software Engineering Literature, and LabTek Experience.

Anilsi & Suppon.: Many of the projects interviewed had some training program, but they
were generally less than three weeks. Untrained or improperly trained programmers tend
to use Ada in one of two modes: either to mimic their most comfortable programming
language (typically FORTRAN), or to go to the other extreme and use every possible
feature of the language, often in places that are inappropriate.

Elegant Ada solutions, like tasking and generics often result in slower and larger programs.
If sophisticated features of the Ada language are used when they are not necessary, the
application will usually perform poorly. For example, tracking targets by creatinw an Ada
task for each target, rather than using an array of records and a loop, will most Likely give
unsatisfactory results in a single processor application. There is a tendency by some to use
the most "elegan Ada solution rather than designing for real-time.

Interviews indicated that some problems with their designs did not appear until late in the
development In retrospect, they would have used other techniques to implement their
application had they known the performance impacts of the chosen technique.

Problem Reuoludon: (Short Term) This problem can be corrected by proper Ada training.
Careful attention must be given to make sure that current Ada implementation problems do
not create a long term influence on the programing styles however. A separation must be
made between features that are always kely to be less efficient than those that are
inefficient because of current technology. Sic Ada is new to many programs, the need for
additional training is substantiaL This goes beyond simple instruction in the syntax and
semantics of Ada, but to the software engineering principles that are. supported by the
language. Managers and software selection groups must also be trained in Ada technology.
For example, users are often mislead by status of validation. The AJPO seal of approval, or
'validated" status of a compiler should not be interpreted to mean that the compiler is
usable for all applications.

(Short Term) Proosals that include provisions for a large number of Ada software
engineers should also show a capability to train their staff. This must include time in the
schedule specifically set aside for training. A percentage (10%) of the staff should have

A-44-

Ada Technology Issues

Ada experience on a previous project, to provide on-going support and training in Ada
Aetails that will not be absorbed during classes.

(Short Term) Contractors and Program Managers should obtain the AJPO's Catalog of
Resources for Education of Ada Software Engineering (the CREASE) available through
the Ada Information Clearinghouse (AdaIC).

A.-45.

Ada Technology Issues

4. Issue Vs. Source Matrix

The issues that were defined in the text are tied to their source in the matrix below. The
first column contains the issue and the next four columns contain the sources. The sources
are: interviews, ARTEWG & SIGAda meetings, current literature, and LabTek
experience. An "X" is placed in the box to indicate the sources of each issue.

Source ARTEWG &
Issue Interviews SIGAda Literature LabTek
(Text Section) Meetings Experience

3. Software Engineering
Issues Related to the Usa
of Ada Technology In Real
-Time Embedded Systems

X X _ X_ X
3.1 Compilation Systems

_ _ _ _ _ _ _x x __x x
3.1.1 Runtime
Environments

X x x x X
3.1.1.1 Configurability

3.1.1.2 Execution
Performance

3.1.1.3 Evaluation

3.1.1.4 Size
_X X

3.1.1.5 Dynamic
Priorities

X _X
3.1.1.6 Parallel
Processing

3.1.1.7 Support of Low
Level Operations

3.1.1.8 Task Restart
_X

3.1.1.9 Cyclic
Scheduling _x

A46-

Ada Technology Issues

ARTG&
Issue Interviews SIGAda Literature LabTek

(Text Section) Meetings Experience

3.1.1.10 Coprocessor
Support

3 .1.11 Distzibuted
Processing

3.1.1.12 Multilevel
Security Support

3.1.1.13 Reliability

3.1.2 Code Quality

3.1.3 Documentation
_ _ _ _ _ _ _x __ _ _ _ _x

3.1.4 Validation
_ _ _ _ _ _ _x __ _x_ _ _

3.1.5 Proposed Ada

Language Extensions
_ _ _ _ _ __ _ _ x x _x

3.1.5.1 Fast Interrupts

3.1.5.2 Greater Control

of Task Control Block
(TCB)

_X _ X
3.1.5.3 Asynchronous
Task Signalling

_ X X _X

3.1.6 Chapter 13

3.2 Software Developmet

Activities and Related
Tools

3.2.1 Requirements
Analysis

_ _ _ _ _ _ _ _ _ _ x x x
3.2.1.1 Rapid
Prototyping

_ _ _ _ _ _ _ _ _ _x_ _ x x
3.2.1.2 Requirements
Tracing

XA X

A -7-

Ada Technology Issues

ARTEWG A
Issue Interviews SIGAda Literature LabTek

(Text Section) Meetings Experience

3.2.2 Configuration
Management

3.2.3 Design -X- - X

3.2.3.1 Flow Diagrams

3.2.3.2 Program Design - X- --

Language (PDL)
X X X X

3.2.4 Documentation

3.2.5 Implementation
_ _ _ _ _ _ _ x __ _ _ _ _x

3.2.6 Integration
_ _ _ _ _ _ _x __ _x x

3.2.6.1 Debuqger:

3.2.6.2 Simulation

3.2.6.3 Regression
Testing

_ _ _ _ _ _ _ _ _ _ _ _ _ ___xX

3.2.6.4 Correlation to
Specified Test
Verification Matrix

X X
3.2.6.5 Test Generation
Assistance

__X_ X
3.2.7 Maintenance

A-4&-

Ada Technology Issues

ARTEWG &
Issue Interviews SIGAda Literature LabTek

(Text Section) Meetings Experience

3.3 Management &
Policies

X_ x x X
3.3.1 Proposal
Development

X X
3.3.2 Resource
Allocation

X X
3.3.3 Reusable Software

3.3.A Traininq

A -49-

Ada Technology Issues

5. Summary

Issues that impact the success of a software development in Ada can be classified into three
prnmary categories: Compilation Systems, Software Development Activities & Related
Tools, and Management and Policies. The area that is creating the most difficulties is
compilation systems. Within this cateory, Ada Runtime Environments (RTEs) are the
largest single impediment to using Ada in real-time embedded applications. Other areas ofconcern include: management understanding of Ada technology and its demand on
resources, and the efficiency of the generated code.

For the current state of Ada technology there are two classes of real-time embedded
applications which are not able to use Ada given the state of the current technology. The
first class are the implementations with 8K bytes or less of memory capacity. Although the
Ada runtime environment sizes are becoming smaller, they are not small enough yet. Even
a customized version is too large for this class of applications. There is no benet to forcing
Ada into this memory size. It will require contortions that are likely to make the code less
reliable, and the effort of rewriting these applications is unlikely to be a major cost given
their small size. The second class of real-time embedded applications which should not be
required to use Ada are the microprogrammed custom hardware systems. It is unlikely that
Ada compilers will be produced for the large number of unique processors built from
bit-slice components.

A common difficulty is selecting an Ada implementation, especially the runtime support
routines, that will meet the needs of the application. The first source of information should
come from the compiler vendors. The app canon requirements should be explained to the
compiler vendor and the compiler vendor should explain how their runtme fits (or does not
fit) the requirements. It may be necessary for the contractor to sip a non-disclosure
agreement, since occasionally the details of the commercially available runtimes are
proprietary. Obviously, the application engineers need to be included in the compiler
selection process to evaluate the tradeoffs involved.

Although compiler vendors are becoming more knowledgeable regarding real-time softare
development, they still need more information about the nature of embedded aplications
and the relative priorities for addressing the problems associated with the RTEs. On the
other hand, defense contractors understand the application requirements but they require
education on Ada runtimes with respect to the Ada language features.

Ada can be used successfully on real-time embedded systems, even with traditional
methods. The full benefits of Ada may not be fully realized however, if new methods are
not adopted to facilitate issues such as maintainability and reusability.

Ada projects can run into serious problems at several different points in the life-cycle.
Initially, in the design phase there may be serious training problems and a need to provide
better guidelines for use of an Ada Program Design Language (PDL). The most likely
"critical area occurs in the test/debug phase where timing and sizing measurements may
differ substantially from original predictions. A method for rapid prototyping should be
utilized to help identify these problems earlier in the development phase.

A -50-

Ada Technology Issues

6. Summary Of Interviews

LabTek prepared a list of questions that would provide much of the information needed.
These questions were used as a guide for the discussions when interviewing each project
manager, software manager, and application engineer. Not all questions could be answered
by everyone and some clarification of the questions was needed. The following is the
information received from the projects. The contributions of all the individuals who
assisted with this effort is acknowledged and appreciated. The information that they
supplied will assist in making positive changes to the way Ada is used in U.S. Army
programs.

The following is a list of the most prominent issues reported:

* Runtime Library Too Large

The PM or contractor reported that the runtime library was too large (size in bytes)
for the memory capacity of the system. In most cases, this was a problem if memory

'was a constraInt.

* Required Customized Runtime Library

The PM or contractor reported that it was necessary to modify the runtime library.
Customization was performed for a number of reasons, the main one being the
runtime library was too large for the memory capacity. The features not absolutely
needed were stripped out. The other reason that it was modified was to improve the
performance.

* Generated Code Not Sufficiently Optimized

The PM or contractor reported problems due to the quality of the generated code.
The generated code was not as efficient as code that could be produced by a
programmer coding in assembler.

* Memory Was a System Constraint

Memory capacity was a constraint and therefore required careful management of it.

* Lack of Chapter 13 Posed a Problem

The PM or contractor reported problems due to the insufficient implementation of
Chapter 13 of the Reference Manual for the Ada Programming Language. It is
interesting to note that in Figure 3.,Percentage Table for Reported Problems', this
problem had the largest discrepancy between what the contractors reported and what
the PMs reported.

* Tasking Algorithm Unusable For Real-Time

The PM or contractor reported that the tasking features were too time consuming to
be used in a real-time application.

Compiler Documentation Was Inadequate

A -51-

Ada Technology Issues

The PM or contractor reported thit the compiler documentation was inadequate for
the problem at hand.

Figure 3., "Percentage Table for Reported Problems", provides the percentages of the
interviews that reported the same problem. The left most column identifies the
problems. The second column contains the percentage of PMs and contractors
combined that reported the same problem. The numbers -in this column are based on
sixteen (16) different interviews. The third column contains the percentage of PMs
only that reported a specific problem. The numbers in this column are based on
interviewing eight (8) PMs. The fourth column contains the percentage of the
contractors only that reported the same problem. It is based on interviewing eight (8)
contractors.

A -52-

Ada Technology hisues

Figure 3. Percentage Table for Reported Problems

UOU R 3D wez Sf ay Pft O COMTRCTOY
CONTMTORSONLY

O M)IN CI () CI)

XATME LUMN TOO LAU= -S UK'3 SWA

a==u aUSrOwIM Muf 1 LM46N 01'73

WKRSTD CODE NO SUMfCMUL OPu1NEW 311 31' 751'

NDZ3, unit SYITN COSNDI! six. SM1u

Loa a7 aHMuI 13 a~ *RMA 3f@Z DX 3

TASEDI *LC@RiTI t31*3L MO REA-IDE! UK' L3 751'

COWEM DOO3Wff*Ton MA DONEUM _u__t

A -53-

Ada Technology Issues.

7. Glossary

For definitions of standard software engeering terminology the reader is asked to
refer to the ANSI/IEEE Std 729-1983, IEEE Standard Glossary of Software
Engineering.Terminology. Terminology not defined in the IEEE standard will bedefined in this glossary.

The "Ada community" is comprised of people in industry, academia, and the
government using Ada technology for their specific requirements. It also includes the
group of people who attend the SIGAda Conferences, and the readers of Ada

ES. The Ada Runtime Environment Working Group (ARTEWG) as well as
the Ada compiler vendors are also part of the "Ada community".

"Ada Technolo"y' consists of the currently available Ada compilation
systems, tools, and associated methodologies.

An "embedded system" is a computer that is programmed to provide specific
functions and integrated into a much larger system. Typically, the embedded
computer is used to control or monitor the operation of the larger system. An
example would be a pilot's advisory system onboard an aircraft. Its function is to
provide the pilot with information such as aircraft roll, pitch, heading, weight, fuel
reserves, etc., and it is integrated with the entire flight system.

A "real-time" sem can best be differentiated by its quality of
responsiveness. The question of how responsive a system must be before it merits
designation as real-time is, of course, a relative one. For this report, "real-time" will
mean that certain processing must take place in a time critical range to insure proper
system functionality. That is, the system will not operate at all if this time is
exceeded, as opposed to operating in a degraded mode.

It follows from the above two definitions that a "real-time embedded system"
is a computer, programmed to perform a specific function, integrated into a much
larger system that must respond to external events in an expedient manner to provide
the functionality required. Characteristics of real-time embedded system software are
the following:

' time critical calculations must be performed periodically (in a frame time,
typically in the millisecond range)

" memory is usually limited

" interrupts signal an external event and must be handled in an expedient
manner (typically in the microsecond range)

I some type of data transmission is to take place if it's a distributed system.

Examples of computations and functions performed by real-time embedded systems
are:

* the sampling of inertial navigation data

4.54-

Ada Technology Issues

" the driving of servos

" performing ballistic calculations

" providing data for a feedback loop

" transmitting/receiving data from one node of a distributed system to the next

" performing signal processing

" performing Kalman filtering.

"Runtime Support (often called runtime)" is the set of procedures or
functions required to support the code generated from a compilation (ie. entry call
in a task, exception raising, abort processing, string catenationetc.).

The "Runtime Support Ubrary" (RSL) is the library of procedures and
. functions from which the runtime routines are selected. The runtime consists of a
subset of the RSL

The "Runtime Environment" (RTE) includes all of the runtime routines, the
conventions between the runtime routines and the compiler, and the underlying
virtual machine of the target computer. Virtual is used in the sense that it may be a
machine with layered software (a host operating system). An RTE does not include
the application itself, but includes everything the application can interact with (see
Figure 2). Each layer has a protocol between it and the layer underneath it for
interfacing. In the event that there isn't an operating system layer, the runtime
includes those low-level functions found in an operating system.

"Software engineering" is the discipline and skillful use of suitable software
development tools and methods as well as sound understanding of certain basic
principles relating to software design and implementation.

The "Software Eng9feerin community" is comprised of people in academia,
industry, and government who are involved in the fields of computer science and
software engineering. It also includes the literature such as: IEE Transactions on
Software Engineering. IEEE Software, ACM Software Engineering Notes, among
other publications.

A -55-

Ada Technology Issues

8. References

[1] ACM Ada Letters (continuing), including many bibliographies.

(2] ANSI/MIL-STD-1815A-1983. "Reference Manual for the Ada Programming
Language", American National Standards Institute, Inc., 1983.

[3] Ichbiah, J.D., Barnes, J.G.P., Firth, RJ., Woodger, M., "Rationale for
the Design of the Ada Programming Language", If. S. Government, AJPO, 1986.

[4] Ada Runtime Environment Working Group of SIGAda, "A White Paper on Ada
untime Environment Research and Development", February 13, 1987.

(5] Ada Runtime Environment Working Group of SIGAda., "A Canonical Model
and Taxonomy of Ada Runtime Environments, November 13,1986.

[6] Jean E. Sammet, IBM Federal Systems Division, "Why Ada Is Not Just
Another ProrM-mi Language", Communications of the ACM, vol. 29, no. 8, pp.
722-732,. August 1986.

L] Ware Myers, "Ada: First users -leased; prospective users - still
esitant", Computer, pp. 68-73, March 1987.

L 8] Rzepka, William and Ohno, Yutaka, "Requirements Eng 'eering
nvironments: Software Tools for Modeling User Needs', COMUTER, pp. 9-12,

April 1985.

(91 Pressman, Roger S., "Software Engineering: A Practitioner's
Approach", McGraw-Hill, 1982.

(101 Carrio, MigueL "Life Cycle and Ada", Defense Science & Electronics, pp.
17-24, July 19.

(I1] IEEE Std 729-1983, "IEEE Standard Glossary of Software Engineering
rminologyr

(12] Gannon, J.D., Ka= E.X, Basil V.R, "Metrics for Ada Packages: An
nitial Study", Communications of the ACM Volume 29, No. 7, pp. 616-623, July

1986.

(13] Gomaa, Hassan, "Software Development of Real-Tune Systems",
Communications of the ACM, VoL 29, No. 7, pp. 657-668, July 1986.

[141 Fisher, D-A, Weatherly, RM., "Issues in the Design of a Disributed
Operating System for Ada, COMPUTER, pp. 38-47, May 1986.

1151 Spiepl, M., "Software PrototypinW', Colloquium Series, Wang
Institute ot Graduate Studies, March 1981.

L16] Mathis, R. F., "The Last 10 Percent, IEEE Transactions on Software
ngineering, vol. se-12, no. 6, pp. 705-712, June 1986.

A .56-

17] Kennedy, T., "Advances in smart munitions", Defense Science &
Electronics, pp. 63-67, October 1986.

[i8] "TRW Multi-level Secure Tactical Operating System", Defense Science &
lectronics, pp. 68, January 1987.

U9] WADS VERDIX Ada Development System, SUN-3/UNIX, VADS Version 5.41",
erdix Corporation, 1986.

"20] WERDIX Ada Development System - VADS Version 5.41 for SUN-3/UNIX =>

Motorola 68000 Family Processors", Verdix Corporation, 1987.

A .57.

FINAL TECHNICAL REPORT

SOFTWARE ENGINEERING PROBLEMS USING ADA IN

COMPUTERS INTEGRAL TO WEAPONS SYSTEMS

by

Sonicraft, Inc.
8859 S. Greenwood Avenue

Chicago, IL 60619

for

U.S. Army HQ CECOM
Center for Software Engineering
Advanced Software Technology
Fort Monmouth, NJ 07703-5000

9 OCTOBER 1987

REAL-TIME ADA PROBLEM 10/9/87

TABLE OF CONTENTS

1. INTRODUCTION 1
1.1 Purpose .. 1
2. 2 Terminoogy 1
3. 3 Organization 4 2o. RE EREN ESE.a o , so o..a..o.o.... oe.o.. o.o.. o. oo.o.. o. *a.o.. s. oo.o..*.so.o..o.oo.o
3. DEFINITIONS ACH o 4

4o ' P RO C o s • a o o a * o * . e* * oo o %o o o a a oo oooo o o o o . o * s *.o o * o o 7

4.1 Sources 7
4. 2 Relevant Problems 7
4. 3 General Problem 8
4. 4 Classification 8

5. SUNM AND RECONKEHDATIONS 10
5. 1 Format of Problem Analysis 10
5. 2 Summary of Findings o 10
5.3 Recommendations .o........ 12

APPENDIX
10. 0 REAL TIME ADA PROBLEMS 13
10. 1 LACK OF KNOWLEDGE CONCERNING TEE ADA RUN-TIME

ENV IRONMENT. o 1 4
10. 2 IMPACT OF ADA COMPILER IMPLEMENTATION DIFFERENCES .. 18
10. 3 IMPACT OF INTERRUPT HANDLING OVERHEAD ON SYSTEM

PERFORMANCE 20
10. 4 IMPACT OF MEMORY MANAGEMENT OVEREAD 25
10. 5 IMPACT OF RUN-TIME SUPPORT LIBRARY OVERHEAD ON SYSTEM

PEPFORMANCE o o 31
10.6 IMPACT OF TASKING OVERHEAD ON SYSTEM PERFORMANCE 35
10. 7 INEFFICIENCY OF OBJECT CODE GENERATED BY ADA

COMPILERS .. 40
10. 8 NEED FOR EXTENSIVE ADA OPTIMIZATION 42
10. 9 INAD=UATE DEBUGGING CAPABILITIES PROVIDED BY CURRENT

DES UGGERS.. 47
10.1 0 ADA EXCEPTION HANDLING 48
10. 11 IMPACT OF EXTENSIVE USE OF GENERICS 49
10. 12 INABIITY TO PERFORM INDEPENDENTLY OF THE RSL 51
10. 13 LACK OF A DISTRIBUTED RUN-TIME SUPPORT LIBRARY

(RSL) 53
10. 14 DIFFICULTY IN PERFORMING SECURE PROCESSING FOR ADA

SYSTEMS 54
10. 15 DIVERSITY IN IMPLEMENTATION OF APSE's................ 59
10. 16 POOR PERFORMANCE OF ADA TOOLS 63
10. 17 DIFFERENCE IN BENCSHMARKING ADA SYSTEMS 66
10.18 LACK OF ADA SOFTWARE DEVELOPMENT TOOLS 72
10. 19 ADA LANGUAGE COMPLEXITY 74
10. 20 CUSTOMIZATION OF RUN-TIME SUPPORT LIBRARY 76
10. 21 LACK OF EXPERIENCED ADA PROGRAMMERS 77
10. 22 EXTENSIVE ADA TRAINING RMUIREMENTS 83
10. 23 INACCURACY OF C/S ESTIMATE FOR ADA PROGRAM 85
10. 24 LACX OF ESTABLISHED ADA SOFTWARE DEVELOPMENT

REAL-TIME ADA PROBLEM 10/9/87

TABLE OF CONTENTS

METHODOLOGY 88
10. 25 LACK OF ESTABLISHED ADA SOFTWARE STANDARDS AND

GUIDEL-INES 92

10. 26 PRODUCTIVITY IMPACTS OF ADA 94
10. 27 IMPACT OF CONSTRAINT CHECKING ON SYSTEM

PERFORMANCE ... 97
10. 28 INABILITY TO ASSIGN DYNAMIC TASK PRIORITIES 98
10. 29 INABILITY TO PERFORM PARALLEL PROCESSING 99
10.31 INABILITY TO PERFORM TASK RESTART 101
10.33 LACK OF FLOATING POINT COPROCESSOR SUPPORT 103
10.35 IMPACT OF ADA COMPILER VALIDATION ISSUES 105
10.36 INABILITY TO PERFORM ASYNCHRONOUS TASK 107
10.37 LACK OF IMPLEMENTATION OF THE IMPLEMENTATION 108

REAL-TIME ADA PROBLEM STUDY 10/9/87

L INTRODOCTION

L 1 Purpose

It is now the policy of the U.S. Department of Defense (DoD)
that Ada shall be the single, common, high-order programming
language for all computers that are integral to weapon
systems [Ref. 1]. Use of validated Ada compilers is required
on all projects, as is the use of Ada-based program design
language (PDL).

This technical report investigates some of the generic problems
that bave arisen when this policy has been followed on actual
projects and relates them to the software engineering
principles embodied in DoD Standard 2167 [Ref. 2].

1. 2 Terminology

The definitions given in 2167 apply to all terms used in this
report, with additional terms defined in ANSI/IEEE Std 729-
1983 [Ref. 3] and in Paragraph 3 of this report.

1. 3 Organization

The report is organized to first show the methods used td
obtain the reported problems in Paragraph 4. The problems
themselves are then analyzed according to the categories of
software engineering principles which they affect, with the
results of the analyses collected in dBASE III compatible
files. These are available in computer-readable format as
well as being presented in the Appendix.

The main findings of this report are summarized in Paragraph 5,
which contains a list of the problems, the relative importance
of each problem, and the categorization of each problem in
the analysis matrix used by the data base. Paragraph 5 also
contains the Sonicraft recommendations for the use of the
information presented herein.

REAL-TIME ADA PROBLEM STUDY 10/9/87

2. REERENCES

[11 Department of Defense Directive 3405.2, SUBJECT: Use of
Ada in Weapon Systems, March 30, 1987

[21 DOD-STD-2167, Defense System Software Development, 4 June
1985

[31 ANSI/IEEE Std 729-1983, IEEE Standard Glossary of
Software Engineering Terms

[43 W. Myers, "A Statistical Approach to Scheduling Software
Development.* IEEE Computer, Dec 78

[5] G. M. Barnes,"Assessing Software Maintainability, " Commun-

ications of the ACM, Jan 84

(61 F.P. Brooks, "No Silver Bullet, " IEEE Computer, Apr 87

[73 F.P. Brooks, " The Mythical Man-Month, " 1975,
Addison-Wesley, Reading, Mass.

[81 S.E. Watson, "Ada Modules,' ACM Ada Letters, vii. 4-79,
1987

[9] C. Kemerer, "An Empirical Validation of Software Cost
Estimating Models," Communications of the ACM, Kay 87

.t101 B. Boehm, "Software Engineering Economics," Prentice-Ball,
Englewood Cliffs, NJ, 1981

[113 . Davis, "Measuring the Programmer's Productivity,'Eng-
ineering Manager, Feb 85

(121 E. W. Jensen, "Projected Productivity Impact of Near-Term
Ada Use in Software System Development, "Hughes Aircraft
Co., Fullerton, CA, 1985

[13] S. Boyd, *Ada Methods: Object-Oriented Design & PAMELA,
SIGAda, Nov 86

(141 MGZN Smith, Policy Committee Reports From Armed Services,
SIGAda, Nov 86

(151 MGEN Salisbury, Policy Committee Reports From Armed
Services, SIGAda, Nov 96

(16] S.J. Hanson and .R. Rosinski, "Programmer Perceptions of
Productivity and Programming Tools, " Communications of

REAL-TIME ADA PROBLEM STUDY 10/9/87

Productivity and Programming Tools, I Communications of
the ACM, Feb 85

[17] G. Booch, " Software Engineering with Ada, " 1983,
Benj amin/ Cummings.

(18] Labtek Corporation, Subject: Software Engineering Issues
On Ada Technology Insertion For Real-Time Embedded
Systems, 24 July 1987.

B3

REAL-TIME ADA PROBLEM STUDY 10/9/87

3. DEFINITIONS

Runtime Support or Runtime Support Library (RSL): The set of
embedded firmware required to interface the applications object
code generated by the Ada compiler to the target machine
instruction set.

MEECH: Minimum Essential Emergency Communication Network, a
stand-alone network that is intended to continue operating
reliably after the primary (higher bandwidth) communication
network has failed (such as after a natural disaster or a
nuclear event).

PAMELA:. Process Abstraction Method for Embedded Large
Applications, a trademark of George Cherry for his Ada design
methodology.

Real-Time Function: Any system function (hardware, software
or a combination) which is considered to have faulted if it
has not been completed within a specified time after a signal
to start. ,

Real-Time Ada: A computer program written in the Ada language
which implements one or more real-time functions, usually
t.iggered by interrupts.

Efficiency: Efficiency deals with utilization of

resources. The extent to which a component fulfills its
purpose using a minimum of computing resources. Of course,
many of the ways of coding efficiently are not necessarily
efficient in the sense of being cost effective, since
transportability, maintainability, etc., may be degraded as a
result.

Integrity: Integrity deals with software failures due to
unauthorized access. and is the extent to which access to a
component or associated data by unauthorized persons can be
controlled.

Reliability - Those characteristics of software which provide
for definition and implementation of functions in the most
non-complex and understandable manner. By reducing complexity
the chances of the program providing the functions as intended
are increased, thereby improving reliability.

Survivability - Survivability deals with the continued
performance of software (e.g., in a degraded mode) even when a
portion of the system has failed.

Usability - User effort required to learn, operate, prepare

input for, and interpret output of a component.

Correctness - The extent to which software design and
implementation conform to specifications and standards.

13 4

REAL-TIME ADA PROBLEM STUDY 10/9/87

Criteria of correctness deal exclusively with design and
documentation formats, such as agreements between a component's
total response and the stated response in the functional
specification (functional correctness), and/or between the
component as coded and the programming specification
(algorithmic correctness).

Maintainability - The ease of effort in locating and fixing
software failures. The extent to which a component facilitates
updating to satisfy new requirements or to correct
deficiencies. This implies that the component is
understandable, testable, and modifiable.

Verifiability - Software design characteristics affecting the
effort required to verify software correctness.

Portability - A property of a program representing ease of
movement among distinct solution environments.

Reusability - The extent to which a component can be adapted
for use in another environment (e.g., different host or target
hardware, operating system, APSE) or another application.

Expandability (Extendibility, Flexibility) -A measure of the
effort in increasing software capabilities or performance or to
accommodate changes in requirements, or the extent to which a
component allows new capabilities to be easily tailored to user
needs.

Training -Those characteristics of software which provide
tzansition from current operation and provide initial
familiarization. A measure of the extent to which training and
other user help is available from the vendor of a component
or from the component itself, including on-line,
documentation, listings, and printouts, which serve the
purpose of providing operating instructions for using the
component to obtain desired results.

Configuration *gmt - A measure of the discipline related
to controlling the contents of a component, including
monitoring the status, preserving the integrity of released
and developed versions, and controlling the effects of changes
throughout the component.

Costs - The cost of a complete component or the costs of
features of a component. Other cost considerations are
installation, user assistance, and maintenance support.

Allocator - An allocator creates a new object of an access
type, and returns an access va2.ze designating the created
object.

Elaboration - Elaboration is the process by which a
declaration achieves its effect. For example it can associate

REAL-TIME ADA PROBLEM STUDY 10/9/87

a name with a program entity or initialize a newly declared
variable.

Exception - An exception is an event that causes suspension of
normal program execution. Bringing an exception to
attention is called raising the exception. An exception
handler is a piece of program text specifying a
response to the exception. Execution of such program
text is called handling the exception.

Rendezvous - A rendezvous is the interaction that occurs
between two parallel tasks when one task has called an entry of
the other task, and a corresponding accept statement is
being executed by the other task on behalf of the calling task.

Task - A task is a program unit that may operate in parallel
with other program units. A task specification establishes
the name of the task and the names and parameters of its
entries; a task body defines its execution. A task type
is a specification that permits the subsequent declaration of
any number of similar tasks.

Visibility - At a given point in a program text, the
declaration of an entity with a certain identifier is said
to be visible if the entity is an acceptable meaning for an
occurrence at that point of the identifier.

3 s

REAL-TIME ADA PROBLEM STUDY 10/9/87

4. APPROACH

Sonicraft used a five step approach to meet the objectives of
this program:

1) Identify the sources which could identify problems
in developing Ada software for computer which are
integral to weapon systems.

2) Identify the relevant problems.

3) Isolate the problems that are generic.

4) Classify the problems based on which aspects of
Software Engineering are affected by each problem.

5) Analyze the effects of each problem for each of
these categories.

4. 1 Sources

The main source of problems was our own experience in develop-
ing the MEECN system, which is the first weapon system
developed using the Intel 8086 microprocessor and the full Ada
programming language (including tasking and other non-
Pascal features). There were literally hundreds of problems
which were encountered in this development, and most were at
least thought to be Ada-related at the time of their
occurrence.

Other sources which were planned included contacts from the Ada
Joint Program Office (AJPO) Evaluation and Validatio n (E&V)
Team; other personal contacts from the government, industry and
academia; information from SIGAda, the National Ada Symposium,
and other Ada conferences; and information from Ada-related
publications.

Due to replanning to stretch out the period of performance of
our task, some of the planned contacts were postponed to the
next phase of this contract. These contacts should be made
to broaden the data base of this study and to avoid the
impression that it is based solely on the experiences of one
organization.

4.2 Relevant Problem

Sonicraft capitalized on the MEECN project experience by
concentrating on the Ada problems that arose from Intel
targets. Since the MEECN project is still in formal test,
and more hardware integration problems will probably
still be found, Sonicraft also concentrated on the early phases
of the Software Life Cycle.

837

REAL-TIME ADA PROBLEM STUDY 10/9/87

Problems were accepted for this study only when the root
cause had been determined unambiguously. In practice this
meant that the problem had been solved and had not returned
in subsequent software tests. This caveat was necessary
because Sonicraft had found problems that appeared to be
Runtime Support Library (RSL) problems of the Ada compiler, but
were later found to be due to other causes. For example, the
Intel Microprocessor Development System once had a probe
which gave erroneous readings due to a calibration problem.
Until this was discovered during a system verification by
Intel, Sonicraft was searching for a nonexistent RSL proble.

4. 3 General Problem

To be considered generic, a problem must have been reported by
more than one source. In addition, problems that stemmed from
a common cause were grouped together as symptoms of the
root problem. As an example, Sonicraft experienced problems in
using several Ada Language System (ALS) tools, but these were
grouped together as part of a single problem (#16) rather than
treatin4 each separately. By doing this the original set of
hundreds of problems was distilled to a more manageable (and
understandable) set of.

By treating only generic problems Sonicraft expects that
users of this report will be more likely to find the problems
they can expect to encounter.

4. 4 Classification

The generic problem impacts were classified into six major
categories:

1) Attributes of the delivered application

2) Methodology used to develop the application

3) Implementation of the application

4) Tools used to develop the application

5) Phase of the Software Development Cycle where
the problem occurs

6) Management impacts on the application

These categories were then subclassified into 51
subcategories, most of which were found to be applicable to at
least one Ada problem. This part of the process is very
amenable to update, as new or better categories can be added
reasonably quickly with the more manageable set of 37 problems
to work with.

REAL-TIME ADA PROBLEM STUDY 10/9/87

4. 5 Analysis

The analysis of each generic problem consists of first a
problem definition, then detailed write-ups showing its impact
on each applicable Software Engineering subcategory. The*
detailed analysis establishes exactly WHAT the problem is,
references WHO (or WHERE) it came from, and explains WHY it is
a problem. Its purpose is to provide enough background
material so that the subcategory analyses will be more
meaningful. This section normally concludes with a brief
summary of Sonicraft's conclusions about the overall effect
of the problem.

The detailed write-ups in each subcategory provide information
needed for a full understanding of the analysis, such as WHEN
the problem occurs in the Software Development Lifecycle, and
how its symptoms (often unrecognized as rooted in this generic
problem) may extend to later phases of the Lifecycle.

Where 'problems are related to other generic problems, the
relationship is highlighted in the portions of the analysis
where it is most needed to understand the problem under
analysis.

Assumptions were not intentionally made in the ar.alysis of
any of the problems, but in several instances the opinion of a
problem source is reported. These instances include specific
references to the source so that the reader can investigate
these opinions in more depth if desired.

In many cases a rationale, such as a developer of the
Ada software for computers integral to weapon systems might
use, is presented to help in understanding why something
might be considered a problem. The use of a rationale
is not a scientifically valid method to support a conclusion,
of course, but was included where it helped to visualize
the kinds of things that experienced developers worry about.

Notably missing from this analysis is the recommendation of
what to do about the problems. This omission was deliberate
because it requires additional data collection and analysis to
arrive at sound conclusions. Even then these conclusions must
be tested to achieve enough credibility to convince people
to take the trouble to implement them. These efforts are
beyond the scope of the present Sonicraft task.

r9

REAL-TIME ADA PROSLEM STUDY 10/9/87

5. SO1Q MR AD RECON&MMATIONS

5. 1 Format of Problem Analysis

Figure 5-1 presents a list of the generic problems that were
found to result from the use of Ada in computers that are
integral to weapons systems. The importance shown for each
problem is determined as. follows:

VI = Very Important problem in terms of its impact on
developers trying to use Ada. Requires awareness of the
developers and needs attention to develop good solutions
as soon as possible.

I a Important problem, but not as potentially damaging to a
development effort as the VI problems.

LI a Least Important problem compared to the others, but
still worthy of attention to develop a good solution.

Figure 5-1 also presents a matrix of these problems versus
the software engineering categories they affect. The Appendix
presents a definition of each problem, a definition of each
category, and a problem impact analysis on each category
wherever an "X" appears in the figure.

5. 2 Summary of Findings

The generic problems seem to convey two messages over and .over:

1) It is a lot more expensive to do programming in Ada.

2) Worse yet, for some applications it is not yet techni-
cally feasible.

Our conclusion after analyzing these problems is that
situation is not necessarily that bleak for a developer
starting out in Ada today. Some of the damage these problems
can cause can be averted simply by knowing about them and
then exercising reasonable vigilance (i.e., Problem #17). To
the extent that this is possible, this report is intended to
be of immediate benefit.

Another point to consider is that most of the Very Important
problems are related to Ada compiler technology in some
way. The focus of this report has been on cross-compilers
targeted to the Intel 8086 microprocessor, which, while being
the most widely-used microprocessor in the world, is not
particularly well suited for Ada tasking. Subsequent products
from Intel are much better in this regard. Also, the 8086-
targeted compilers have markedly improved about every six
months since the first one was validated less than two years
ago. While it is dangerous to extrapolate this trend to the

1-o

M 93

31 N9 PCN

31 31L~c N9 MN

39 N1 x 2 9 3 mNN9m

is Me ItN NN 31 N a 39

tc 31 26 N1 N1 30 N

3N N

-52-t
_&ON Net001

34fl c

StN

% ax a.. 3 1
00 Ne&020 NN N N N 9 31 N 9LA

N N wN wN 13

- - * 939 w 31 9 9 36S w2
Nfa m- f N 19stS

29e 34 Ssc39 2
Meaftsma~wo-N N9 N9 N1 N1 939 393 93

i: S - - - 4 19mb

- AJ

N- 24 INm 9N3

a .. 319. N 9 N9 N1 N NN

Z ,* Wo ow W 39 N1 3N N4 N

N4 C

asp~ m6bcS N Na N

N N

a fac fE N N N N N N N N t

N N N NN N N1

5v N

REAL-TIME ADA PROBLEM STUDY 10/9/87

future, it is nevertheless encouraging.

Finally, the tone of this report has been set by
intentionally concentrating on the problems in the use of
Ada. A similar report concentrating on thirty-seven
advantages in the use of Ada for computers integral to
weapons system could have been written instead, and it would
have given the opposite impression. In fact, we see the
introduction of Ada as a tremendous boost to productivity,
but only after problems similar to those analyzed here have
been addressed.

5. 3 Recommendations

Sonicraft recommends that the poroblem data base be enriched in
three ways:

1) Periodically reassess the problems since Ada
technology, especially for compilers, is very
dynamic.

2) Determine the effects of using current development
methodologies on the frequency of problem occurrence.

3) Determine a problem avoidance matrix, constructured
similarly to figure 5-1, showing what developers do
to avoid or minimize the occurrence of generic
problems.

These extensions and updates will magnify the benefits of this
report and help speed the acceptance of Ada as a viable
language for embedded processors.

812

APPENDIX 10
REAL TIME ADA PROBLEM

~13

REAL-TIM ADA PROBLEM STUDY 10/9/87

10. 1 LACK OF KNOWLEDGE CONCERNING THE ADA RUN-TIME
ENV IRONMENT

10. 1. 1 Definition

The language provides a very complex, powerful, and
sophisticated run-time environment to support such Ada
features as memory management, process control, and others.
The primary element in the Ada-supplied run-time environment is
the Run-Time Support Library (RSL). The RSL performs a
number of activities which include:

* Memory Management

Dynamic memory allocation/deallocation
Garbage collection

* Process Scheduling

Task activation/deactivation
Task scheduling
Task rendezvous

* Resource Control

Resource scheduling
Resource monitoring

* Error Processing (exception handling)

The RSL resides in the target environment during system
operation and operates in conjunction with the applications
software.

The performance of the RSL affects the performance of the
applications programs (tasking, memory management, interrupts,
etc.). The RSL is also part of the system debug/testing
process since it resides in the target environment. The RSL
may require customization as part of the system optimization
process. The RSL may need to be benchmarked to obtain an
accurate estimate of system performance.

The information concerning the RSL characteristics is vital to
the applications developers, since they must address the impact
of the RSL during system design and implementation. If this
information is not made available to the applications
programmers, there is little hope that the system being
dev.loped will perform as expected. To date, the Ada
compiler vendors have provided little information to the Ada
applications developers concerning the detailed sizing, timing,
performance, and functional characteristics of the RSL.

10. 1. 2 Maintenance

•~ ~~1 14n n n nl

REAL-TIME ADA PROBLEM STUDY 10/9/87

The implementation of changes to an Ada program is dependent on
the capabilities of the RSL and the interfaces between the RSL
and the programs being maintained. Lack of knowledge
concerning the RSL could result in the implementation of
program changes without a full understanding of their impact on
system performance.

10. 1. 3 Correctness

The Ada run-time environment includes the resident RSL programs
which interact with the applications program(s). Lack of
knowledge concerning the RSL could lead to misunderstandings
concerning the functions of the RSL and the applications
programs. These programs could lead to the development of
applications programs that do not perform as expected.

10. 1. 4 Verifiability

During the testing of Ada programs, errors that are found must
be iso ated to program components so that they can be
corrected. Lack of knowledge concerning the RSL causes added
difficulty in isolating and correcting these errors because it
is difficult to determine whether the error is due to an
incorrect applications program, a problem in the RSL, or a
misunderstanding concerning the operation of the RSL or its
interfaces to the applications programs.

10. 1. 5 Risk

The development problems that arise from a lack of knowledge of
the RSL can greatly increase the risk associated with the
development of an Ada applications program. Technical risk can
result because applications programs might be developed that do
not provide expected performance or capabilities due to an
incomplete understanding of the efficiency and functional
capabilities f the RSL. Extensive rework and redesign may be
required to rework these deficiencies, because the changes that
are made to correct these problems may impact other areas of
the sytem. Cost and schedule risk are also factors and will be
addressed as project management issues.

10. 1. 6 Software Requirements Analysis

Lack of knowledge of the RSL capabilities could prevent Ada
software developers from performing an accurate software
requirements analysis with regard to issues such as sizing,
t.iming, performance, and functionality. Since the RSL operates
4n conjunction with the applications software, it is critical
for Ada developers to know the characteristics of the RSL when
attempting to determine the feasibility of meeting proposed
system requirements.

10. 1. 7 Preliminary Design

. a n nn nn nnm mnr mnn un m

REAL-TIME ADA PROBLEM STUDY 10/9/87

Lack of knowledge concerning RSL functionality, performance,
and interfaces could prevent Ada software developers from
specifying correct and efficient interfaces between the RSL and
the applications software. The performance of the RSL must be
addressed while performing preliminary system sizing and timing
analysis. Also, the operations that are performed by the RSL
(task scheduling, memory management, etc.) must be considered
when attempting to determine the various system states.

10. 1. 8 Detail Design

Lack of knowledge concerning the implementation details of the
RSL could cause problems during the Detailed Design Phase. The
run-time performance of the RSL must be addressed when
performing the detailed system sizing and timing analyses.
Accurate information concerning the interfaces between the RSL
and the applications program is necessary to develop the
detailed software interface definitions.

10. 1. 9 CSC Test

During CSC integration and testing, lack of knowledge
concerning the functional, performance, and interface
characteristics of the RSL makes it very difficult for the Ada
developers to isolate software errors. Also, any problems that
originate in the RSL itself (due to the immaturity of the run-
time programs) are almost impossible to debug unless someone
with an extensive knowledge of the RSL code (most likely
supplied by the compiler developer) is available to the
development team.

10. 1. 10 CSC Test

The problems that occur during this phase, due to lack of
knowledge of the RSL, are similar to those described in the CSC
testing phase. They all result from rework from earlier phases
of tasks done in error due to RSL misunderstanding.

10. 1. 11 System Test

The problems that occur during the system testing phase due to
lack of knowledge of the RSL are similar to those that occur in
the CSC and CSCI testing phases. They are all rework of tasks
in earlier phases, but the rework is much more expensive in
this phase because of the formal testing that must be repeated.

10. 1. 12 Personnel Resources

Lack of knowledge of the RSL can result in incorrect design,
which then requires sometimes extensive rework by senior staff
members. This effort, along with the effort necessary to learn

1l6

REAL-TIME ADA PROBLEM STUDY 10/9/87

about the characteristics of the RSL, requires the use of
additional personnel resources.

10. 1. 13 Cost

The development problems that arise from a lack of knowledge of
the RSL can adversely impact system development costs. This
lack of knowledge can result in failure to design/implement
correct interfaces between the applications programs and the
RSL. It can also result in applications programs that do not
provide expected performance or capabilities due to an
incomplete understanding of the efficiency and functional
capabilities of the RSL. The rework and, in some cases these
problems can cause a significant increase in project
development cost.

10. 1. 14 Schedule

The problems that can arise from having a lack of knowledge
concerning the RSL characteristics could adversely impact the
system development schedule.

17

REAL-TIME ADA PROBLEM STUDY 10/9/87

10. 2 IMPACT OF ADA COCPILER IMPLEMENTATION DIFFERENCES

The differences in Ada compiler implementation can impact the
performance of an Ada application. The ACV% tests that are
used by the AJPO to validate candidate Ada compilers primarily
verify the functional and syntactical aspects of the compilers,
they do not address performance and implementation issues.
Between this and the optional implementation issues discussed
in Chapter 13 of the Ada Language Reference Manual, a compiler
vendor has some flexibility in determining a compiler
implementation approach. The areas in which the impacts of
compiler implementation differences are most likely to be
observed are:

* The efficiency of the generated Ada object code

* The size of the RSL

* The run-time overhead associated with the RSL

* Implementation of language features (tasking,
generics, etc.)

* Compilation speed (lines of code per minute)

Differences in compiler implementation can have an effect on
system performance. They can cause a reduction in system
efficiency, thus requiring additional system resources
(hardware and software). Impacts can also be felt in the areas
of system maintainability (for both the -compiler and the
applications software) and in modifications that must be made
to other Ada support tools (such as the debugger) to reflect
the compiler implementation differences.

10.2. 1 Efficiency

The ACVC tests that are performed to validate an Ada compiler
are primarily concerned with functional and syntactical issues;
they do not address implementation and efficiency issues. Thus
a different compiler implementation that provided reduced
efficiency would still be validated if it passed the ACVC
tests.

The performance of an Ada compiler is affected by a number of
issues such as the algorithms employed by the compiler to
perform its processing, the effectiveness with which the
compiler-generated code utilizes the system architecture, and
the performance (execution speed and memory usage) of the
compiler-generated code.

If a different implementation of an Ada compiler did not
perform as well in some of these system-specific and
application-specific areas, the result could be a reduction in

REAL-TIME ADA PROBLEM STUDY 10/9/87

the overall efficiency of the system.

10.2. 2 Maintenance

A different implementation of a compiler could provide reduced
maintainability for the compiler itself, if the implementation
resulted in an" increase in compiler complexity. The
nkaintainability of the applications programs could also be
adversely affected if the different compiler implementation
caused an increase in the complexity of the- compiler-generated
object code.

10.2. 3 Benchmark

To determine the anticipated impact, if any, of a different
compiler implementation on system performance, the compiler
should be benchmarked to assess its performance. Along with an
evaluation of overall compiler performance, this benchmarking
should address those areas of the compiler in which the
diffeient implementation could adversely impact system
performance.

10.2. 4 Vendor Xnterface

The differences in Ada compiler implementations could adversely
impact performance of the compiler and the compiler-generated
code. To obtain detailed and accurate information describing
the compiler implementation and its impact on system
performance, it is important to establish a relationship with
the compiler vendor. The compiler vendor can provide this
information to the applications developers and can help them
relate these results to the system development.

10. 2.5 Prototype

To determine the impact of the different Ada compiler
implementations on system performance, a prototype of the the
system should be developed. This allows the applications
developers to obtain an actual evaluation of the impact of the
different compiler implementations in their application
environment.

10. 2. 6 Debugger

Differences in the implementation of the Ada compiler can
impact the design of the system debugger. For example,
dif!erences in the target machine memory layout constructed by
the compiler must be incorporated into the debugger so that it
:eflects the differences.

1l9

REAL-TIME ADA PROBLEM STUDY 10/9/87

10. 3 IMPACT OF INTERRUPT HANDLINGd OEREAD ON SYSTEM
PERFORMANCE

With the embedded system being the primary target for the use
of the Ada language, the effici.ent handling of interrupts
becomes a major issue. Interrupts can be defined as hardware or
software signals that stop the current processes of the system
under specified conditions and in such a way that the processes
can be resumed. In the embedded system environment, interrupts
are critical to the ability of the system to respond to real-
time events and perform its required functions. Interrupts, in
general, signal the occurrence of some predefined event to the
embedded system. The embedded system must then perform the
correct functions in some determined amount of time.
Therefore, any overhead time, time spent on processes that are
over and above the required processes, will degrade the ability
of the embedded system to meet its functional requirements. To
better illustrate the problem, please note the following:

I< ---------- B ------------- >< ------------- C ------------- >1
A

A : Represents the occurrence of a interrupt.

B : Represents the overhead time required to stop the
current process and switch to the interrupt
handler process.

C : Represents the time spent performing the required
processes in response to the interrupt.

The problem that exists with Ada today is the overhead time O"r
that is required in a Ada program to stop and switch to the
interrupt handling process is too large and in many cases
unacceptable for embedded system applications. Currently, Ada
programs have overhead times in the hundreds of microseconds to
milliseconds. The non-Ada embedded system application overhead
times have been in tens of microseconds or less.

10.3. 1 Efficiency

The efficiency of the application program will be directly
affected by the overhead of interrupt handling. Thus the system
will inefficiently process the incoming interrupts. The more
interrupts the system has to process per unit time will
determine how inefficient the application program and the
system will be.

B2o

REAL-TIME ADA PROBLEM STUDY 10/9/87

10.3.2 Reliability

With the amount of overhead associated with the processing of
embedded system interrupts, one must be very careful in the
design of an Ada system. Because the period of time it takes to
begin executing the interrupt handler can vary, it is possible
for the system to occasionally miss an interrupt. This usually
compromises the functioning of the system and. may even shut it
down.

10. 3.3 Portability

Portability of Ada programs will prove to be more difficult,
since interrupt processing in an implementation depends on
features of the RSL. The timing involved in the execution of
interrupts using one compiler cannot be guaranteed to work on
another compiler.

10.3. 4 Benchmark

Benchmarking is often required when a new set of tools is being
evaluated for use on a given project. Because of the critical
nature of interrupts to the performance of real-time embedded
systems, there is a strong need to develop some detailed
benchmark tests to evaluate the characteristics of the tools
with respect to interrupts. By developing a set benchmark
tests the project will be able to evaluate the various tools
available and select the set of tools best suited to meet the
requirements of the given project. This can produce major cost
savings later in the life cycle because of proper tool
selection.

10. 3. 5 Simulation

After the interrupt characteristics of a particular set of
tools have been tested and the results show that there may be
some risk of meeting the requirements, than a series of risk
reduction simulations are required. The purpose of the
simulation effort will be one to determine the impact on the
design of the system and two what course of action must be
taken for risk reduction. To perform these steps the simulation
effort will simulate a subset of the required functions of the
embedded systems. The functions to be simulated are those
functions that show a high degree of risk. For this particular
problem of interrupt overhead impact, the designer's aim is to
reasonably prove or disprove that he can meet the requirements
of the project. Simulations are one of the best ways to
determine early in the project life cycle the feasibility of a
design approach.

il1

REAL-TIME ADA PROBLEM STUDY 10/9/87

10. 3.6 Optimization

Once simulations have been developed and the designer can
experiment with the problem of interrupt overhead impacts, he
can determine if there is any need to optimize either the tools
or his design approach. The impact of performing optimization
can be delays in project schedules, cost over-runs, -and loss of
readability and maintainability. Thus, optimiza-tion effort
would only be conducted if it is determined that it is required
to meet the requirement of the project.

10. 3.7 System Sizing

In the embedded system environment sizing is a critical factor
and any overhead impacts will directly effect the sizing of the
system.

Such is the case for the overhead associated with the use of
Ada interrupts. Of course, benchmark testing and simulations
should be conducted to determine the full impact of the
overhead'on the system sizing requirements. If it is determined
that there is to much risk of not meeting the requirements,
then corrective action, such as optimizing can be taken.

10.3. 8 System Timing

Another critical factor in the development of the embedded
system has to do with timing or the ability of the system to
respond to events. Because embedded systems rely heavily upon
interrupts to signal the occurrences of external events, any
overhead associated with the processing of the interrupts will
directly affect the system timing.

The problem is compounded if the system requires a number of
interrupts to be processed at a high frequency rate. Again,
benchmark testing and simulations must be conducted early in
the project life cycle to determine the severity of the
interrupt overhead. If the overhead is too high, then often-
costly optimization approaches must be taken.

10. 3. 9 Prototype

many times the impact to system timing cannot be determined
under simulated (mainly software-software testing) conditions.
Thus, a rapid prototype of the real embedded system is
required. Because the prototype is similar to the real system,
the design engineer can conduct overhead and its effects on the
timing of the system, the design engineer can measure and test
to verify if the system can respond to events in a timely
fashion. If there is a problem then corrective action can be
taken.

322

REAL-TIME ADA PROBLEM STUDY 10/9/87

10. 3. 10 Software Requirements Analysis

It is critical in the Requirements Analysis Phase for the
engineering staff to have a clear understanding of what the
system is required to do. Once the requirements are known, the
engineer can begin to conduct feasibility studies, benchmark
testing, and simulations to verify and identify those
requirements that can be met and those that have risk
associated with them. Because of the overhead associated with
the use of Ada interrupts it is critical that in this phase
engineers begin to identify how critical is the overhead in
terms of meeting specific requirements. If it is determined
that they cannot meet the requirements either with their
current design because of Ada tool set limitations or because
of the Ada language itself, corrective action must be taken
early. Again, when using Ada, design engineers must be
particularly careful to verify that the requirements can be met
with the current Ada tool set.

10.3. ,.1 Preliminary Design

The Preliminary Design Phase should be based on sound
information developed in the Requirements Analysis Phase. If
there is a lack of knowledge regarding high risk elements of
the system, such as inter- rupt overhead, the preliminary
design of the system can be seriously impacted. If the problem
of interrupt overhead is not discovered until this phase,
corrective action must be taken to reduce the risk of failure.
This may mean a change in the system requirements or a modified
approach to the system design. The longer a problem goes
undetected the more costly it will be to resolve the problem in
the later phases.

10.3.12 Detail Design

As in the Preliminary Design Phase, the Detail Design Phase
must be based on sound information from the prior phases. The
impact that interrupt overhead can have on the detail design of
a system can result in a complete redesign of the system. This
could cause major cost impacts and schedule slippages. However,
if no simulation or prototypes have been built to verify the
design approach, major problems, such interrupt overhead, can
go unseen in the Detailed Design phase. Depending on the nature
of the problem the project could be headed for failure if
neither the hardware design nor the software design considers
the problem.

B 23

REAL-TIME ADA PROBLEM STUDY 10/9/87

!C. 3.13 Personnel Resources -

With regard to Personnel Resources, the problem of interrupt
overhead will not create a major problem if the risk analysis
is done early in the software development cycle. However, if
the problem is not identified until the Detailed Design Phase,
additional personnel may be required to modify the design and
stay on schedule.

If special optimization is required to the Ada tool set,
specialists may be required.

10. 3.14 Cost

As discussed in earlier sections of this problem (Impact of
Interrupt Overhead On System Performance), major cost impact
can be incurred by a project. Interrupts play a critical role
in the design of embedded systems. The later in the development
cycle the problem is discovered, the more costly Lt will be to
resolve the problem.

10. 3.15 Schedule

Schedule impact will be determined by how severely the
interrupt overhead will affect the design of the system and how
many extra resources a project must have to resolve the
problem. If the problem is severe and the project lacks the
required resources, schedule impact will occur. Of course, the
longer the problem goes unresolved the greater the schedule
slippage can be.

24

REAL-TIME ADA PROBLEM STUDY 10/9/87

10. 4 IMPACT OF MEMORI MANAGEMENT OVERHEAD

The run-time support provided to Ada applications programs by
the Ada RSL includes a number of memory management functions.
The primary functions are memory allocation and deallocation
and heap storage management (garbage collection). These
functions are performed by the RSL either on an as needed basis
(memory allocation/deallocation during a context switch) or as
required by the application (use of access types to create
objects at run-time).

However, the RSL memory management features add a significant
amount of run-time overhead to the performance of an Ada
system. Since these functions are resident in the target
machine and operate in conjunction with the application
programs, they also require system resources (CPU,memory). The
utilization of system resources by the RSL must be addressed
when performing overall system sizing and timing analyses in
the applications environment. It is important to know whether
the overhead associated with the RSL memory management features
is large enough to affect the ability of the system to meet
specified requirements.

10. 4. 1 Efficiency

Use of the memory management features of the RSL can
significantly increase system overhead while reducing overall
system efficiency. The Ada memory management features utilize
system resources - CPU time to perform the functions and
storage for the memory management software within the RSL. The
memory management software is resident in the target machine
and operates in conjunction with the applications software.
Thus, the memory management software contendm with the
applications programs for access to system resources (CPU and
memory). Thus, when estimating or assessing system resource
utilization, the resource requirements due to memory management
overhead must be addressed.

10. 4. 2 Correctness

The RSL memory management software resides in the target
environment and operates in conjunction with the applications
programs. Thus, it is essential that the correctness of the
memory management software for a particular application be
verified as part of the overall system verification,
validation, and acceptance process. This will probably require
some support from the compiler vendor since the memory
management software is pre-packaged and delivered as part of
the RSL.

1325

REAL-TIME ADA PROBLEM STUDY 10/9/87

10. 4. 3 Verifiability

The programs which perform the Ada memory management functions
reside in the target environment (within the RSL) and operate
at runtime in conjunction with the applications programs.
While attempting to isolate errors found during the system
debugging and testing process, the performance and correct
operation of the memory management software must be verified
along with that of the applications programs. This can prove
to be difficult, since it involves verifying and debugging
software that the applications programmers are generally
unfamiliar with.

10. 4. 4 Security

The Ada memory management functions performed by the RSL can
have a significant impact on system security. The RSL memory
management functions are performed at run-time in conjunction
with vthe operation of the applications programs.

For an application which involves classified processing, it is
important to control the access to classified programs and data
by all software that is resident in the target environment,
including the RSL memory management software. If, for example,
the RSL memory management software performs garbage collection
in an area of memory where classified data is stored, it is
possible that the classified data could be corrupted.

Currently, it does not seem to be possible to prevent the RSL
from accessing particular portions of memory (where secure
information may be stored) without providing special protection
methods. These methods could include the use of a software
kernel or special-purpose hardware to control access to
protected memory locations.

The implementation of methods such as these could require
significant modifications to the RSL. Since the RSL memory
management functions are pre-packaged within the RSL, these
modifications would probably have to be implemented by the
compiler vendor.

10. 4. 5 Senchmark

To develop a complete and accurate estimate of performance for
an Ada system, the run-time overhead due to the memory
management features must be assessed. To obtain a clear
picture of expected performance for the RSL memory management
functions, benchmark data should be gathered. The compiler
vendor and other applications developers (if available) should
be contacted to supply as much of this data as possible based
on performance estimates and actual experience.

26

REAL-TIME ADA PROBLEM STUDY 10/9/87

However, two main problems exist in obtaining this data.
First, the data that is obtained from the compiler vendor and
applications developers may not reflect the expected memory
usage characteristics for the Ada system being developed. Some
(extensive) interpolation will probably be required. Secondly,
obtaining application-specific benchmark data for the memory
management features is very difficult due to the unfamiliarity
of the applications developer with the RSL.code. This effort
will probably require the assistance of the compiler vendor.

10. 4.6 Simulation

To obtain a complete and accurate of system performance for an
Ada system, an end-to-end system simulation should be
performed. The model of the Ada system being developed should
include the effects of the run-time memory management features.
However, most Ada applications developers are not familiar
enough with the operation of the RSL memory management features
to develop an effective simulation. To do this will probably
require support from the compiler developer.

10. 4.7 Optimization

ue to the current state of the available Ada tools, the
performance of Ada software systems is a major issue. The poor
Ada system performance is primarily due to the inefficiency of
the generated Ada code and the extensive overhead associated
with the run-time functions performed by the RSL. One of the
typical solutions to this problem is to perform extensive Ada
system optimization.

To combat the additional overhead and potential security
problems (controlled access to programs and data) due to the
RSL run-time memory management features, system optimization
may be required. This optimization may include modifications
to the RSL memory management software to increase its execution
speed, decrease its program size, and build in memory access
controls. Because most applications developers are unfamiliar
with the operation of this RSL, this effort would probably
require support from the compiler vendor.

10. 4. 8 System Sizing

When performing system sizing estimates, the RSL memory
management features play two important roles. First, this
software resides in the target environment and operates in
conjunction with the applications programs. Thus, the amount
of memory space that it requires must be included in the system
sizing estimates. One typical system optimization technique is
to remove from the RSL those memory management features which
are not required for a particular application.

REAL-TIME ADA PROBLEM STUDY 10/9/87

Secondly, the RSL provides memory-management features which can
be critical for real-time embedded systems, such as memory
allocation/deallocation and heap storage management (garbage
collection). For example, the memory deallocation feature
could conceivably reduce the amount of system memory required
to execute the applications programs by allowing the programs
to deallocate memory areas as soon as they have finished
processing them. But this advantage could be offset by the
additional memory required to perform the memory deallocation
function.

Detailed systems analysis should be performed, in conjunction
with the compiler vendor, to determine the overall impact of
the RSL memory management features on system sizing.

10. 4. 9 System Timing

When performing system timing estimates, the RSL memory
management features play two important roles. First, the RSL
memory management software resides in the target environment.
and operates at run-time in conjunction with the applicationb
programs. Thus, the execution time required for the memory
management software must be included in the system timing
estimates. One typical optimization technique is to remove
from the RSL those memory management functions which are not
required for a particular application.

Secondly, the RSL memory management features can be-critical
for the development of real-time embedded applications. These
features include memory allocation/deallocation and heap
storage management (garbage collection). For example,
performing garbage collection could conceivably improve system
performance by merging non-contiguous areas of memory and
providing sufficient memory to begin execution of a program
earlier than would have occurred otherwise. But these
advantages must be weighed against the additional system
overhead associated with the memory management features.

Detailed systems analysis should be performed, in conjunction
with the compiler vendor, to determine the overall impact of
the RSL memory management features on mystem timing.

10. 4. 10 Vendor Interface

To ensure that the memory management functional and performance
issues are addressed in the overall system design, the
applications developer must establish a close relationship with
the compiler vendor. This is doubly important since the
sometimes extensive Ada system optimization tasks may require
support from the compiler vendor and/or modifications to the
compiler or RSL.

D28

REAL-TIME ADA PROBLEM STUDY 10/9/87

For example, the compiler can be a valuable source of memory
management benchmarking data for use in performing system
sizing and timing analyses. The compiler vendor can also
provide support to the applications developers during system
optimization and will be required to make any necessary changes
to the compiler and/or RSL in conjunction with the development
effort.

10. 4. 11 Prototype

To validate the system design and evaluate system performance,
the application developer should build a prototype of the Ada
system under development. The prototype should contain the
actual system hardware and system software (compiler and RSL)
and should implement critical system functions.

This prototype should be used to determine the actual system
impact of the RSL memory management overhead and compare this
to expected results. The prototype should also be used to
evaluate the effect on memory management overhead of changes to
the hardware, system software, and applications software.

10. 4.12 Compiler

For particular Ada applications, the overhead resulting from
the RSL run-time memory management features may require system
optimization to be performed. This optimization may include
modifications to the RSL to remove unwanted sections of the RSL
memory management software, to add required functions (such as
controlled memory access), or to improve its efficiency
(reduced execution time and memory requirements).

If required, these changes must be designed and implemented by
the compiler vendor with support from the applications
developer to ensure that the changes are as requested. The
changes must then be tested (via prototype) to evaluate their
performance. The system documentation must be updated to
reflect these changes.

10. 4.13 Software Requirements Analysis

During the Software Requirements Analysis Phase, information
concerning the performance and functionality of the RSL memory
management features should be provided to the applications
developers to support preliminary system sizing, timing, and
functional analyses. The results of these analyses should
identify potential problem areas to-be addressed as part of the
system design effort. If this data is not made available
durlng the Software Requirements Analysis Phase, the results of
the system analyses will not be accurate. This could result in
severe problems during the system design and implementation

|29

REAL-TIME ADA PROBLEM STUDY 10/9/87

phases in areas such as desig-n rework, requirements for
additional hardware and software, extensive system
optimization, and system security.

10. 4.14 Preliminary Design

During the preliminary design, the result of the software
requirements analysis efforts are used to develop a preliminary
system design. The performance and functional capabilities of
the RSL memory management software must be made available to
the system designers to support their efforts. This
information is evaluated to determine its impact on system
hardware selection, system sizing and timing estimates, and
selection of an Ada compiler and support software tools. The
results of the preliminary design efforts may also identify
potential areas where the RSL memory management features must
be modified to meet system requirements. If these areas are
not identified as early as possible in the system development
cycle, they could critically impact the entire project, since
they must be implemented by the compiler vendor in parallel
with the, development effort.

10. 4. 15 Detail Design

During the detailed design effort, detailed system sizing and
timing estimates should be available which include the overhead
due to the memory management- features. Any required design
changes to the compiler and RSL memory management software
should be incorporated into the overall system design. A
prototype of the Ada system should be built to verify the
functional capabilities and the accuracy of the sizing and
timing estimates for the RSL memory management software.

If these activities are not performed, the implementation and
testing efforts could be impacted due to performance problems
related to the memory management features. This could result
in extensive design rework in order to meet system performance
requirements.

630

REAL-TIME ADA PROBLEM STUDY 10/9/87

10. 5 IMPACT OF RUN-TIME SUPPORT LIBRARY OVEREAD ON SYSTEM
PERFORMANCE

The Runtime Support Library (RSL) is the total package of
software required at run-time to support .the execution of the
object code generated by the compiler for the application
program. Functions such as dynamic memory management, system
activation/allocation, interrupt processing, input/output
operations, co-processor support, and tasking are all performed
by the RSL. The basic problem with the RSLs of today is that
they are generally too large and too slow for many embedded
system applications. In terms of sizing, the problem is more
noticeable when the application program is fairly small. In
this case, it's very possible that the RSL can be larger than
the application program. As the -application programs grow
larger, the proportion of memory taken by the RSL become less,
thus the impact is not as great. For timing impacts, the
amount of overhea experienced will depend upon what features
of the language are used. Generally speaking, the more you
use the unique features (tasking, dynamic memory, delays, etc.)
of Ada, the more over-head that is incurred. This can be
attributed in part to the immaturity of existing RSLs.
Because some of the Ada features are new to the implementors of
the language, the techniques of implementing them efficiently
are still emerging.

As an example of what some contractors are experiencing in RSL
overhead, on Sonicraft's MEECN (Minimum Essential Emergency
Communications Network) project it was discovered that the RSL
alone would require over ninety kilobytes (KB). Of course,
optimization efforts had to begin immediately to reduce size
since the system was limited in its memory and power usage.

10. 5. 1 Efficiency

The overhead associated with the Run-Time Support Library will
impact the efficiency of embedded systems in terms of sizing
and timing. Because of the inefficiencies of the RSL, embedded
systems today will utilize more memory (RAM, ROM) and execute
programs slower.

10. 5. 2 Benchmak

Good benchmark testing of the Run-time Support Library (RSL) is
a must to insure the successful design and development of an
embedded system using Ada. All aspects of RSL overhead problems
must be identified and done so as early in the software
development cycle as possible. For without this critical
information designers will design the system based on faulty
information or the-lack of information. This can lead to major
cost and schedule impacts, if not the complete failure of the

1 31

REAL-TIME ADA PROBLEM STUDY 10/9/87

system to performance. If the contractor cannot obtain the
required benchmark test results from the developer of the Ada
tool set, they must conduct benchmark testing themselves.

10.5.3 Simulation

To verify that the RSL overhead problems will not cause a
problem in one's design approach, one must conduct simulations
of the system. This will help identify the RSL overhead
problems that are a risk to the project. Problems such a sizing
and timing are critical to the development of the system. If
the sizing and timing requirements of the RSL are not
discovered until the Detailed Design Phase major cost and
schedule impact can be incurred by both software and hardware.

10. 5. 4 Optimization

If through benchmark testing and simulation it is discovered
that optimization is required, one may find this to be very
expensive. This is because the Run-Time Support Library is
larger and more complex than in other high languages. Usually
the contractors cannot modify the RSL themselves, so they have
to contract the vendor to perform the optimizations.

When Sonicraft discovered that the size of the RSL was over
ninety kilobytes, we began to investigate optimization
solutions. It was determined that one of the major size drivers
was the fact that major portions of the RSL was written
in Ada. Since the Ada compiler was very inefficient it
produced a very large RSL. The solution was to rewrite
much of the RSL in assembly language.

10.5. 5 System Siz i-Ig

The problem of havrig RSL overhead will directly affect the
system sizing. Because the RSL is inefficient it will require
more code to perform a particular function. This means more
memory is required for the system. To avoid a situation where
the application program will not fit into the available system
memory, one must conduct simulations and possibly build a rapid
prototype. By doing so, problems will be identified early in
the development cycle and corrective action can be taken.

10. 5. 6 System Timing

To determine how the RSL overhead problems will affect the
system timing requirements, one will have to built a rapid
prototype of the real embedded system. This will allow the
design engineers to examine the timing of the system and
determine what problems may exist. As soon as problems with
regard to timing are known, the chances the project will have
for successful completion within coat and schedule can be
known.

32

REAL-TIME ADA PROBLEM STUDY 10/9/87

A key problem that affects the system timing is the RSL's
ability to process interrupts efficiently. Please refer to
problem number three for a more detailed discussion of this
problem.

10. 5.7 Prototype

As referred to in the System Timing section for this problem a
rapid prototype may be required to identify what impacts the
RSL overhead problems will have on the requirements of a
particular system. The earlier'the problems are identified the
sooner corrective action can be taken to resolve the problem.

10.5. 8 Compiler

There is a direct connection between the overhead problems of
the Run-Time Support Library and the Ada Compiler. The
connection is that much of the RSL is written in Ada and, as
discussed in problem number seven, the Ada compilers of today
producq inefficient object code. So when the run-time code is
compiled by an inefficient compiler, the result is a large,
inefficient RSL. As an optimization solution to the problem of
having a large RSL, Sonicraft contracted the vendor to rewrite
portions of the RSL in Intel assembly language. This way less
of the RSL code was produced by the Ada compiler and some
degree of size reduction was obtained.

10.5. 9 Software Requirements Analysis

In the Software Requirements Analysis Phase the engineering
staff must have a clear understanding of what the system is
required to do. Once the requirements are known, the engineer
can begin conducting feasibility studies, benchmark testing,
and simulations to verify and identify those requirements that
can be met and those that have risk associated with them. The
overhead impacts associated with the Run-time Support Library
make it critical that in this phase engineers begin to identify
how critical is the overhead in terms of meeting the system
requirements in software vs. hardware. If it is determined that
they cannot meet the requirements because of the current
design, the RSL, or the Ada language itself, corrective action
must be taken early. This task may demand that training to
understand RSL operation be obtained.

10.5.10 Preliminary Design

The Preliminary Design Phase should be based on sound
information developed in the Software Requirements Analysis
Phase. A lack of knowledge regarding high risk elements of Ada,
such as run-time support impacts, can jeopardize the
preliminary design of the system. If the problems of run-.time

]a33

REAL-TIME ADA PROBLEM STUDY 10/9/87

overhead are not discovered until. this phase, it will be more
costly to take needed corrective action. This may mean a
change in the system requirements or a redesign of the run-time
code. The longer a problem goes undetected the more costly it
will be to resolve the problem in the later phases.

10. 5.11 Detail Design

The Detail Design Phase must be based on sound information from
the prior two phases. The impact thAt run-time overhead can
have on the detail design of a system can result in the
complete failure of the system to perform to specifications.
This can cause major cost impacts and schedule slippages.
Again, if no simulations or prototypes have been built to
verify the design approach, major problems, such as run-time
overhead problems, can go unseen in the Detailed Design Phase.
Depending on the nature of the problems the project could be
headed for failure since it is the RSL that is controlling most
of the execution of the application program at run-time.

I34

REAL-TIME ADA PROBLEM STUDY 10/9/87

10. 6 IMPACT OF TASKING 7ERBZAD ON SYSTEM PERFORMANCE

One of the key features of the Ada language is tasking. Ada
tasks are 'entities whose executions proceed in parallel (REF.
l]. This feature gives Ada a great advantage or other high-
level languages, but not without a price. The cost is in terms
of overhead. Tasking overhead affects the efficiency of the
system in both sizing and timing.

Whenever a designer decides to utilize tasking in an Ada
program, he will automatically incur an additional cost in
terms of additional run-time support code, which can be as high
as thirty kilobytes. This code is required to perform the
various features (entry calls, accepts, selects,..etc.) of Ada
tasking at run-time. Another sizing problem has to do with the
stack requirements of tasks. The designer must allocate enough
memory for his application to make available the additional
stack memory for task control information. Also, any stack
memory required for any run-time procedures called to execute a
particular feature must be added to the total size of the task
stack allocation. The stack allocation requirements are
required for each task declared in the designer's application
program. Thus, the problem is compounded.

With the use of tasking, today's applications will experience
timing overhead impacts due to tasking features like task
allocation, task activation/termination, task switching,
synchronization and task rendezvous. To determine what kind of
overhead would be incurred by using tasking, a study was
performed by Hughes Aircraft Company. The study conducted a
series of tests using the DEC Ada Compiler (1.2) on a VAX 8600
(VMS 4. 2). The following results show the magnitude of task
overhead compared to the processing done within the task
itself.

3s

REAL-TI14E ADA PROBLEM STUDY 10/9/87

Task Normal
Description Overhead Proc.

(usec) (usec)

1. Task activation and termination 1960 178
2. Task created via an allocator 150 14
3. Producer-Consumer (2 task switches) 503 46
4. Producer-Buffer-Consumer 1220 111
S. Producer-suffer-Transporter-Consumer 1694 154
6. Producer- Transpt-Suffer-Transpt-Consumer 2248 204
7. Relay 906 82
B. Conditional Entry

- no rendezvous 170 15
- rendezvous 29 3

9. Timed Entry
- no rendezvous 254 23
- with rendezvous 33 3

10. Selective Wait with Terminate 127 12
11. Exception during a rendezvous 962 87

[Ref] T.M. Burger and K.W. Nielsen, "An Assessment of the
Overhead Associated with Tasking Facilities and Task Paradigms
in ADA", Hughes Aircraft Company.

10. 6. 1 Efficiency

Because of the tasking overhead in Ada today, many embedded
systems will try to avoid the inefficiencies by minimizing or
even eliminating the use of tasking. By doing so, the code at
the Ada source level may be inefficient code, since the tasking
features of Ada would be better suited for these particular
functions. However, the non-tasking code may produce smaller
amounts of code to run on the target machine because this code
need handle only the special case at hand.

10. 6. 2 Benchmark

Benchm~ark testing of tasks has proven to be difficult,
partially because of compiler vendors and their implementations
of tasking. The compiler implementors have been given a great
deal of implementation latitude, and as a result, it is
difficult to develop a set of benchmarks that completely
characterize this area. However, difficult it is for one to
test the characteristics of tasking, the information is
urgently needed if embedded systems are be developed without
unforeseen impacts.

n36

REAL-TIME ADA PROSLE4 STUDY 10/9/87

10. 6.3 Simulation

Simulations of embedded system designs using Ada tasking is
required for a number of reasons. First, the concept and use of
Ada tasking in embedded system design is new to many of today's
Software engineers. As a result, the impact of using tasks can
go without notice and result in major cost impacts.

Second, the characteristics of the compiler with regards to
tasking may be vague or unknown, thus the. simulation will help
identify problems associated with the use of tasking.

Third, the simulation provides a time where the design can be
optimized to avoid the overhead impacts of tasking.

On Sonicraft's MEECN project simulations were conducted to
determine how to control the task elaboration and activation
process. This was necessary to insure the proper start-up of
the system. In the process, it was discovered that the task
elaboration/activation overhead time required to complete
start-up was longer then the time period for the system power-
up-fail indicator, as a result system design modifications were
required.

10.6. 4 Optimization

The inability of todays RSLs to handle tasking efficiently will
impact many embedded system projects to the point of requiring
special optimization. Such was the case on Sonicraft's MEECN
project, an Intel 8086 based system, where it was discovered
that task switching times were on the order of milliseconds.
Special optimiz-ation of Ada compilers will often require the
assistance of the vendor. Of course, this increases the cost to
develop the system using Ada.

10. 6.5 System Sizing

Tasking overhead will directly affect the sizing of the system.
The use of tasking in the system will require additional run-
time support code, thus more ROM memory is required. The
inefficient use of stack space will also require additional
RAM. An example of this is the *Null Task* used in the 8086
ALS. The purpose of this task is to execute when no other task
is available to execute. This task contains virtually no code
and therefore it should need very little RAM. However, since
it's a predefined task it is assigned the default stack size of
four kilobytes plus two kilobytes additional space for the
handling of errors. Thus, you have six kilobytes allocated for
a task that does virtually nothing.

3 7

REAL-TIME ADA PROBLEM STUDY 10/9/87

10. 6. 6 System Timing

As in system sizing, the overhead of tasking will directly
affect the system timing. As the number of tasks increase in
the design so will the overhead. This is one of the major
reasons why embedded system designers try to avoid using
tasking: the overhead costs both in terms of sizing and timing
are too high.

10. 6. 7 Prototype

As in problem number five, the development of a rapid prototype
to prove or disprove the design; is an excellent way of
determining how tasking overhead will impact the performance of
the system. Although prototypes can be expensive, the cost
savings obtainable due to the risks associated with tasking
makes it a viable option.

10. 6. 8 Software Requirements Analysis

With the commitment of DOD to the use of the Ada
language,contractors must perform a comprehensive analysis of
their requirements. Many of today's requirement specifications
are written with the mind set of past performance in embedded
systems. However, with the Ada mandate firmly supported, the
immaturity of Ada compilers versus the performance expectations
of these spec writers may be a problem for now. The impact of
tasking overhead requires the system to have more memory, and
execution speeds are currently slow in areas such as task
switch.ing. These impacts may require that the system
requirements be expanded to better support the use of Ada.
Other options may be to continue development under the
restrictive requirements and contract to have the tasking
overhead problem optimized. Clearly, it is critical that the
system requirements be closely reviewed with respect to the use
of Ada.

10.6. 9 Preliminary Design

The impact that tasking overhead :an have on the development of
a preliminary design is severe. Because this is the case
engineers cannot assume that Ada tasking will execute with the
speeds they are accustomed to. Early in the Preliminay Design
Phase sizing and timing analyses must be conducted to reduce
risk. These analyses must be based on sound benchmark results
on the compiler and simulation results on the system's critical
functions. By doing so, the impact of tasking overhead can be
considered in the preliminary design of the system.

3 38

REAL-TIME ADA PROBLEM STUDY 10/9/87

10. 6. 10 Detail Design

At this point in the development cycle the impact of tasking
overhead can cause a complete redesign of the system. Tasking
is one of the main program units which directly affects system
timing. Considering that interrupts are handled by tasks, the
degree to which a real-time embedded system is capable of
responding to real-time events; will be determined in part by
the impact that tasking overhead has on the system. Again,
analysis should be conducted prior to this phase to avoid major
cost and schedule impacts.

39

REAL-TIME ADA PROBLEM STUDY 10/9/87

10.7 INFJICIENCY OF OBJECT CODE GENERATED BY ADA COMPILERS

As with most first generation compilers for new languages, the
Ada compilers today are somewhat inefficient because of the
complexity of the Ada language. Unfortunately, the lack of
efficient compilers directly impacts the development of
embedded systems today. Embedded systems typically have very
restrictive requirements on sizing, timing and power
consumption. Therefore, any inefficiencies in the object code
generation will impact the cost and performance of the typical
weapon system. Because the compilers are producing more code
than required to implement a particular function the
compilation time is longer. As a result, it takes developers
somewhat longer to complete the coding process. This means
schedule and cost impacts.

10.7.1 Efficiency

The inefficiency of Ada compilers directly afZects the
efficient execution of the run-time program. E bedded system
development is impacted both in terms of memory usage and
execution speed. One of the chief contributors to this problem
is the validation process. While 'validation guarantees
legitimate Ada code, it does not guarantee performance" [REF
11. As a result there are many validated compilers today that
are production quality, with production quality meaning: a
compiler capable of producing machine code that does not
greatly exceed that obtained from assembly-language
programming, and the execution speed of this code must be
comparable to that of assembly-language machine code.

(Ref] W. Myers, "Ada: First Users - Pleased; Prospective Users
- Still Hesitant", Computer, 1984.

10.7.2 Bencbmark

As a consequence of the lack of high quality ACVC tests to
provide embedded system designers with any test results on the
performance characteristics of Ada compilers, it has been
necessary for the embedded designer to either develop or
contract the development of benchmark testing of Ada compilers.

10.7. 3 Simulation

Due to the impact of the inefficient object code generated by
todays Ada compilers, embedded system designers must develop
and conduct comprehensive simulations of their critical
!unctions to verify they can meet the requirements.

340

REAL-TIME ADA PROBLEM STUDY 10./9/87

10.7. 4 Optimization

The impact that the inefficient compiler has on an embedded
project is the requirement to optimize. Either the embedded
designer spends time optimizing his design as a consequence of
the compiler or the compiler itself is optimized. Both can be
very expensive.

10.7.5 System Sizing

System sizing is directly impacted by the inefficient
generation of object code. This will impact the amount of
memory required in the system, power consumption and system
reliability. Whenever possible the designers may take
shortcuts, such as the inclusion of assembly language, to
obtain a reduction in memory, which can lead to less
maintainable code.

10.7.6 System Timing

Inefficient object code mainly affects system timing due to
added overhead time caused by the execution of the unneeded
code. In some cases the added overhead can cause the system to
perform poorly in response to real-time events.

10.7.7 Compiler

The problem of the inefficient Ada compiler is probably the
most discussed problem in the Ada community. The reason for
this is that the compiler is one of the first (and one of the
most used) tools needed to make the software a reality. If the
compiler does not work properly or works inefficiently, the
project is immediately impacted. Such is the case with many of
the validated compilers today. Some of the common problems are;
slow compilation speed, poor diagnostics, failure of valid Ada
constructs and inefficient object code generation.

4l1

REAL-TIME ADA PROBLEM STUDY 10/9/87

10. 8 NEED FOR EXTENSIVE ADA OPTIMIZATION

Due to the inefficiency of compiler-generated Ada applications
code and the excessive overhead associated with the RSL run-
time support, extensive optimization is generally required to
improve the performance of Ada systems.

The types of system optimization that are performed include:

* Customizing the RSL for a particular application
* Reducing RSL overhead (tasking, memory management,

interrupts)
* Adding special-purpose hardware and software
* Rewriting applications programs (algorithms)
* Modifying compiler implementation details
* Using non-Ada software
* Providing absolute addressing capability
* Providing for storage of constants in ROM

However, this extensive optimization can adversely affect
system performance and project productivity. The addition of
special-purpose hardware and software along with the use of
project-specific programs can reduce system portability,
reliability, maintainability, reusability, and verifiability,
and can increase system complexity. Also, the extensive rework
that is performed as part of the optimization efforts can
decrease overall project productivity.

10. 8. 1 Reliability

As a result of the extensive optimization that is sometimes
required during the development of Ada systems, the overall
system reliability can be reduced. This is due to the fact that
system changes, particularly when made to a complex system, can
im-pact other areas of the system in subtle ways that are only
discernible under certain conditions. System problems that are
related to these changes may only occur in times of system
stress or when a very specific series of events occurs. If
'hose situations are not identified and corrected, the overall
system reliability is reduced. Comprehensive regression
testing must be performed as part of the system optimization
process to minimize the adverse impact on system reliability.

10. 8. 2 Maintenance

As a result of the extensive system optimization that is
performed during the development of real-time embedded Ada
systems, overall system maintainability can be reduced. This
is due to the increase in overall system complexity that
generally accompanies the optimization process. The increase in
system complexity makes the operation of the system more
difficult to understand and thus reduces system
maintainability.

2B42

REAL-TIME ADA PROBLEM STUDY 10/9/87

i0. 8. 3 Verifiability

The extensive system optimization that is sometimes performed
in the development of Ada systems can adversely impact the
verifiability of the system. This is due to the increase in
system complexity that occurs as a result of the optimization
efforts. The increase in system complexity makes it more
difficulty to test the system and to verify that the system is
meeting its requirements.

10. 8. 4 Portability

The extensive system optimization that is performed during the
development of Ada systems can reduce system portability. A
number of the changes that are implemented during the system
optimization process provide enhanced performance or
functionality for a specific application. This is usually done
by taking advantage of implementation dependencies in the
target' machine or system software or by adding special-purpose
hardware and software to the system. Overall, these changes
make it more difficult to transport the developed Ada software
to another target machine or to use a different set of Ada
tools (off-the-shelf).

10. 8. 5 Complexity

The extensive system optimization that is performed during the
development of Ada systems can increase the overall complexity
of the system. This is due in part to the patching that must
be done to the original design to implement changes,
particularly if the system is not designed in a modular fashion
to accommodate such changes. The requirement for special-
purpose hardware and software to perform the optimization also
contributes to the increase in system complexity.

10. 8. 6 Reusability

The extensive system optimization that is performed during the
development of Ada systems can reduce the reusability of the
system and applications software. This is because a number of
the changes that are made to support the optimization efforts
are project-specific. These changes are implemented by
modifying the applications and system software to take
advantage of design and implementation details that are
specific to the application being developed and to any special-
purpose hardware and software that are used in the application.
The overall effect is to reduce the reusability of the
acplications and system software.

43

REAL-TIME ADA PROBLEM STUDY 10/9/87

10. 8. 7 Development Environment

The extensive optimization performed during the development of
Ada systems can affect the applications development
environment. This occurs when the proposed optimization
approach requires the use of special-purpose hardware or
additional system/support software. Drastic changes to the
development environment can have a major impact on the overall
system performance and characteristics and can also adversely
impact the system development schedule.

10. 8. 8 Non-Ada Software

To implement the extensive optimization that is performed
during the development of Ada systems, the use of non-Ada
software may be required. This non-Ada software is generally
used to improve system performance (sizing and timing) or to
implement machine-dependent functions (low-level hardware
interfaces). Sowever, the use of non-Ada software,
particularly assembly language, tends to reduce the overall
maintainability of the system, due to the fact that most non-
Ada languages cannot provide the readability,
understandability, and power of Ada.

10. 8. 9 Vendor Interface

in the current Ada development environment, a large amount of
the system optimization that is performed involves.
modifications to the Ada compiler and RSL. Thus, it is
critical that a working interface be established between the
applications developer and the compiler vendor. The compiler
vendor should provide information to the applications developer
concerning the operation and performance of the Ada tools that
are supplied (consulting support) and should also implement any
required changes to these tools.

10. 8. 10 uompiler

In the current Ada development environment, a large number of
the changes that are implemented during optimization are made
to the compiler and RSL. The complexity of the compiler makes
it essential that extensive regression testing is 'performed
while implementing these changes. It is easily conceivable
that implementing a change to one portion of the compiler could
impact other sections of the compiler, thus possibly reducing
the overall correctness and reliability of the compiler.

S44

REAL-TIME ADA PROBLE4 STUDY 10/9/87

10. 8. 11 Preliminary Design

During the Preliminary Design Phase, the initial optimization
methods that are necessary to meet system requirements should
be identified. This optimization can result in changes to the
design of the applications program and also to the design of
the Ada software tools (compiler, etc.). Those. optimization
requirements that are not identified in this phase must then be
identified in later phases, where a larger amount of effort is
required to rework the design.

10. 8. 12 Detail Design
4

During the Detailed Design Phase, those optimization
requirements that were not identified during the Preliminary
Design Phase must be addressed. The optimization efforts may
involve changes to the applications programs and the Ada system
software tools (compiler, etc.). Any optimization requirements
that are not addressed in this phase must be addressed in later
phases, where the effort required to rework the design is much
more extensive. Also, any requirements for special-purpose
hardware and software should be identified in this phase and
incorporated into the overall system design.

10. 8. 13 CSC Test

During the CSC Test phase, the additional system complexity
that results from the extensive Ada system optimization
increases the effort required to test and verify CSC
performance and operation. Also, any additional system
optimization tasks that are identified in this phase will
require more effort to implement because they were found so
late in the system development cycle.

10. 8. 14 CSCI Test

During the CSCI Test phase, the additional system complexity
which results from the extensive Ada system optimization
increases the effort required to test and verify CSCI operation
and performance. Also, any additional system optimization
tasks that are identified in this phase will require more
effort to implement because they were found so late in the
system development cycle.

10. 8. 15 Personnel Resources

To perform the extensive optimization that is required to
develop Ada systems, a larger number of senior engineers are
required. These engineers must have experience in the design
and implementation of Ada systems and must have some knowledge
of the operation and performance of Ada system tools. These
personnel requirements should be supplemented by obtaining
consulting support from the compiler vendor.

4s

REAL-TIME ADA PROBLEM STUDY 10/9/87

10. 8. 16 Facilities

The extensive optimization that is required to develop Ada
systems can result in a requirement for additional development
and test equipment and facilities. The additional equipment
could include special-purpose hardware, system software, and
support tools. The additional facilities could include
sophisticated emulation and debugging systems to address the
increased complexity of the applications programs.

10. 8. 17 Cost

The extensive optimization performed during the development of
Ada systems can add significantly to the system development
cost. The development costs can increase significantly if the
proposed system changes result in extensive rework to the
system design and implementation. The development cost can be
further increased if the optimization requirements are not
identified until late in the system development cycle, since
this increases the amount of rework that is required.

10. 8. 1 8 Schedule

The extensive optimization that is performed during the
development of Ada systems can have a significant impact on the
system development schedule. The development schedule can be
lengthened due to the extensive amount of effort required to
rework the system design and implementation. The development
schedule can be further impacted if the optimization
requirements are not identified until late in the system
development cycle.

10.8.19 Estimation

To ensure that the proposed system development cost and
schedule are as complete and accurate as possible, the
estimated effort required to perform Ada system optimization
should be included in the overall project estimates. This data
can be estimated using historical data, if it is available, or
by using a reasonable estimate for the particular type of Ada
application being developed, based on Ada software cost
estimation models. However, it should be noted that,
currently, very little historical data exists for Ada projects
and very few Ada cost estimation models exist which have been
proven to be accurate.

346

REAL-TIME ADA PROBLZM STUDY 10/9/87

10. 9 INADEQUATE DEBUGGING CAPABILITIES PROVIDED BY CURRENT
DEBUGGERS

Poor debugging tools do not give the engineer adequate control
and visibility of the program at run-time. This will directly
affect the verifiability of the program and the system.

10. 9. 1 Debugger

The debugger plays a major role in the finalization of a
software development effort. An inadequate debugger can cause
long delays in the finalization process. Thus, schedules are
slipped and cost impacts are incurred. Because the designer
will now have to debug a system that contains code not
developed by himself, the problem of an inadequate debugger is
compounded. Such is the case with Ada debuggers that do not
provide the necessary control and visibility to efficiently
debug an Ada program. Hence, the designer may be forced to
contract the vendor of the run-time support library to help
debug his system.

47

REAL-TIME ADA PROBLEM STUDY 10/9/87

10. 10 ADA EXCEPTION SANDLING

The whole idea of handling unexpected errors at run-time is a
very good concept. But having developed and debugged some Ada
programs, one begins to sense there is a problem with the
handling of exceptions. The problem has to do with the manner
in which an exception is reported to the engineer and the lack
of information that is conveyed. This is particularly true when
the exception that is raised is a non-user-defined exception.
Further, if the application program does not require the
inclusion of TEXTIO, and many will not because of its large
size, or no capability to display text messages exists in the
run-time program, the problem can be compounded. This is
because it is now possible for an exception to be raised and
the engineer not know of its existence until it manifests
itself as a failed function much later. Now the engineer must
search for the source of the exception and then determine why
the exception was raised. Depending on the debugging tools
available to the engineer and how far the manifestation of the
problem is from the real problem, the determination of the
problem dan be long, frustrating and costly.

10. 10. 1 Verifiability

The inability of today's run-time support code to generate
adequate trace-back information when exceptions occur will
directly affect the verifiability of Ada programs. Without
verification of proper execution, bugs can remain in programs
and cause future problems in the application system.

3348

REAL-TIME ADA PROBLEM STUDY 10/9/87

10. 11 IM4ACT OF EXTENSIVE USE OF GENERICS

The use of Ada generics is regarded as a major step towards the
development of reusable Ada programs. However, in the current
Ada environment, extensive use of Ada generics can adversely
impact the performance of Ada systems and the productivity of
Ada development efforts. The extensive use of generics can
result in a significant increase in system memory requirements.
This is due to the general inefficiency of code that must be
shared by a variety of programs, the additional code that must
be required to implement conditional processing within the
shared code, and the additional processing required to
implement the use of the actual parameters within the generic
instantiation.

There are also impacts on productivity. Each time a generic
program is changed, all programs which contain an instantiation
of the generic must be recompiled. Also, the generics
instantiations are essentially compiled as in-line code, which
increases overall compile time.

10. 11. 1 Efficiency

The extensive use of generics can have an adverse impact on
system efficiency. One reason for this adverse impact is thatcode designed to be used (shared) by number of different
programs is generally written less efficiently than code that
is only to be used for one specific purpose. The algorithms
for shared code are usually written in a more general
(flexible) fashion and the shared code usually involves some
amount of conditional processing, which also reduces
efficiency.

Because of the way in which Ada implements generics, a
substantial amount of code which supports the actual parameters
for each generic instantiation is included in the memory
requirements for generics. Also, in some implementations of
the Ada compiler, generics are, in effect, compiled as in-line
code. This can greatly increase the system memory
requirements.

10. 11. 2 Benchmark

To obtain an estimate of the impact on system memory
requirements on the extensive use of generics, it is
important to benchmark the performance of the compiler in
generating the generic instantations. This information is
useful in assessing the overall system resource requirements.

5 49

REAL-TIME ADA PROBLEM STUDY 10/9/87

10.11. 3 Optimization

The extensive use of generics could cause a significant
increase in system memory requirements. Minimizing the impact
of these increased memory requirements could require system
optimization. This optimization could include modifying the
processing performed by the generic to require less memory or
modifying the compiler to reduce the memory requirements for
generic instantiations.

10. 1. 4 System Sizing

The extensive use of generics could cause a significant
increase in the overall system memory requirements. This
impact must be considered when performing system sizing
estimates.

10. 1i. 5 Prototype

The extensive use of generics can cause significant increases
in the system memory requirements. To obtain an assessment of
the actual system impact and to evaluate the potential memory
savings due to the proposed system optimization techniques, a
prototype of the system should be built. The information
obtained from the prototyping effort provides valuable input to
the system design.

10. 11. 6 Cost

The increased system memory requirements that result from
extensive use of generics and the effort required to perform
system optimization can increase the overall system development
cost. Overall project productivity is decreased because each
time a generic is modified and recompiled, all programs which
instantiate that generic must be recompiled. Also, the
generics are often compiled as if they were in-line code, which
increases overall system compilation time.

5o

REAL-TIME ADA PROBLEM STUDY 10/9/87

10.12 INABILITY TO PERFORM INDEPENDENTLY OF TEE RSL

One of the common requirements for the embedded system is the
requirement to perform Built In Test (BIT). BIT is the ability
of the embedded system to perform a self-test without external
equipment and indicate if the system is good or bad. BIT is
usually performed by some combination of hardware and software.
One of the key functions in performing a self-test is the
setting of the system to a known state. A good example of this
would be the initialization of RAM (random access memory). When
an embedded system is first powered up, the state of RAM is
unknown. Therefore, one of the functions of BIT is to set RAM
to a known state and then verify it. The problem occurs when
the application is implemented in the Ada language. The run-
time support code is designed to take control of the system at
power-up and perform system elaboration. When elaboration is
completed all task stacks and variables have been allocated.
But the state of memory (RAM) is still indeterminate. If BIT
were to run after elaboration it would destroy the state set up
by the, RSL. Therefore, BIT must execute before the RSL. Today,
one must modify the run-time support code to perform this type
of function, and to do so can be very costly and time consuming
because you are modifying someone else's code.

10. 12. 1 Reliability

The inability to perform SIT befre the RSL configures processor
memory means that much of RAM is untestable. This would have a
severe impact on system reliability because a RAM failure could
go undetected for some time, causing erroneous operation of the
system. Since this unacceptable, some o'ther scheme is
necessary as a work-around, such as RAM bank seitching or an
assembly language routine that runs before the RSL takes over.
Bank switching is usually not an usually not an option due to
the system penalties when additional computer resources are
used.

10.12. 2 Vendor Interface

The use of an assembly language routine to perform BIT before
the RSL configures processor memory can require extensive
vendor interface. This is because many RSLs are currently
unable to surrender control grcefully, as BIT requires. Where
the ability to seize control is designed into the RSL this
aspect of the problem goes away.

10. 12. 3 IMPORTER

The use of an assembly language routine to perform SIT before
the RSL configures processor memory requires some provision for
importing code written in a language other than Ada. This
capability is usually present in Ada compillers now on the
market so this is rarely a problem.

51

REAL-TIME ADA PROBLEM STUDY 10/9/87

10. 12. 4 Preliminary Design

The use of an assembly language routine to perform BIT before
the RSL configures processor memory impacts the Preliminary
Design phase of the development cycle. During this phase the
compiler must be selected, and the requirements for an importer
[refer to Importer discussion for this problem] and for vendor
interfce to assuure a way to seize control from the RSL [refer
to Vendor Interface discussion for this problem] should be a
big consideration in its selection. Failure to address these
needs will impact subsequent design phases very severely.

~52

REAL-TIME ADA PROBLEM STUDY 10/9/87

10. 13 LACK OF A DISTRIBCJM RUN-TIM SUPPORT LIBRAR (RSL).

The term "concurrent processing" is often mentioned in the same
breath as Ada. This is because the Ada is designed with
concurrent processiqg as a goal. This goal is met by creation
of tasks. Bowever, many of today's implementations of the Ada
Language Reference Manual (LRM) are not capable of true
parallel (concurrent) processing. This can be attributed to the
lack of RSLs that are designed to be distributed across
multiple processors. Another reason may be the LRM itself,
since it does not address the requirements for distributed Ada
processing. Many of today's embedded system applications have
requirements that warrant the design of systems capable of true
parallel processing. Where parallel processing is required, the
technique that is often implemented is distributed processing.
Distributed processing occurs when computer processes are
distributed across multiple computer processing units (CPU) to
achieve true parallel processing. Today, an embedded system
with multiple processors, implemented in the Ada language, must
develop Ada prog rams for each CPU in the system. Thus, the
system incurs the cost of additional memory, timing, and
hardware to accommodate an RSL for each processor.

10. 13.1 Efficiency

Lack of a distributed RSL hurts memory efficiency by forcing a
separate copy of the RSL in each processor which is using Ada
instructions. Strong coupling to a central memory bank
containing the RSL conflict arbitration schemes not available
in current Ada compilers.

10. 13.2 Integrity

Lack of a distributed RSL hurts software integrity because
processors, being loosely coupled, cannot be built up in a
hierarchically secure manner. The most secure systems
("trusted" systems) have an almost impenetrable single core,
which is impossible in a distributed Ada system today without
extensive modification to the RSL.

10. 13. 3 System Sizing

Lack of a distributed RSL increases system sizing because
multiple copies of the RSL are required. Even in a modest
system of three or four processors this can add on the order of
100 kilobytes to the memory requirement (depending on the
comoiler selected). For complex systems, such as modern
avionics with over a hundred processors, this penlty can be
severe enough to redesign the RSL to eliminate the multiple
copies.

s3

REAL-TIME ADA PROBLEM STUDY 10/9/87

10. 14 DIFFICULT! IN PERFORMING SECURE PROCESSING FOR ADA
SYSTEMS

Due to the current unavailability of a secure Ada operating
system and the excessive overhead associated with the use of a
secure Ada kernel to restrict system memory accesses, it is
currently difficult to build a setcure processing application in
Ada.

The Ada language allows the applications programmer to perform
run-time, and system level operations which increase the
difficulty involved in protecting classified programs and data
within the system. These operations include the creation,
access, and destruction of objects at run-time, the use of
address specifications to access particular memory locations;
and the writing and execution of in-line assembly language
programs.

Also, the RSL code is not only *resident in the target
environment, but runs in conjunction with the applications
programs. Thus, to fully verify the security of an Ada
system, the RSL code must be evaluated and certified as part
of the system certification effort. This is difficult because
most Ada applications programmers have little knowledge
concerning the operation of the RSL.

10. 14. 1 Integrity

One of the major problems in developing Ada systems to perform
secure processing is to maintain system integrity (programs and
data). Ada is a very powerful language which allows an
applications programmer to perform low-level activities such as
creating, accessing, and destroying objects at run-time; using
address specifications to access specific memory locations; and
writing and executing in-line assembly language programs. The
Ada run-time environment also contains the RSL which operates
in conjunction with the applications programs and accesses the
system data in memory.

Capabilities such as these make it much more difficult to
ensure the integrity of system programs and data since they can
be performed at run-time by the applications programmer or by
the system software (RSL). Currently, there are no secure
operating systems available for use in Ada systems, and the
overhead involved with implementing a se-ure kernel is
prohibitive for most Ada applications. Thus, these security
issues are generally addressed at the program level and by the
use of special-purpose ha.dware which provides the required
protection.

354

ii! ! |

REAL-TIME ADA PROBLEM STUDY 10/9/87

10.14.2 Security

For Ada systems in which secure processing must be performed,
the difficulty required to construct a secure Ada environment
can be a major source of problems. Currently, there are no
secure operating systems for use in the development of secure
Ada applications, and the overhead associated with the use of a
secure kernel is generally considered too prohibitive for
current Ada applications.

The security level of the Ada applications programs can be
monitored reasonably well by reviewing the applications
programs at both the source and object code levels. However,
this task is made more difficult by the availability of certain
Ada features that can be used by the Ada applications developer
at run-time. These features include creating, accessing, and
deleting objects; using address specifications to access
specific memory locations; and writing and executing in-line
assemb-ly code.

Another security problem is created because the RSL programs
are resident in memory and operate in conjunction with the
applications programs. To properly ensure system security, the
RSL programs must also be verified and certified to meet system
security requirements.

10. 14. 3 Complexity

Currently, there is a lack of secure operating systems for Ada
applications and the overhead associated with building a secure
kernel is considered to be prohibitive for most Ada
applications. Thus, Aa applications developers must generally
use special-purpose hardware and software to implement the
security mechanisms required to protect the system programs and
data. However, this special-purpose hardware and software can
increase system complexity through the addition of
sophisticated and complex hardware and software interfaces.

10. 14. 4 Risk

The security risks associated with developing a secure Ada
system in- involve two major areas.

The first area is providing protection to offset the powerful
run-time memory access and control capabilities provided to the
applications programmer by the RSL. Standards and procedures
must be established to monitor the usage of these functions.
If this is not done properly, it is possible that the system
might not receive certification.

The second area is to verify and certify the RSL software which
resides in the target environment and operates in conjunction
w:th the applications software. This is risky because it must

S5A

REAL-TIME ADA PROBLEM STUDY 10/9/87

be done in the context of th-e application environment
(hardware, software, optimization) to achieve system
certification, and any problems that are found could require a
significant effort to correct (special-purpose hardware and
software, system redesign).

10.14.5 Development Environment

Currently, due to the lack of a secure Ada operating system and
the overhead associated with developing a secure kernel,
security requirements are generally implemented through the use
of special-purpose hardware and software. The addition of this
special-purpose hardware and software and the overhead
associated with performing the security can have a significant
impact on the development environment. It may require the
redesign of system interfaces and optimization to provide
system performance enhancements. Also, the security
requirements and the proposed method of implementation are a
major factor in the choice of system hardware, software, and
support tools.

10.14.6 Vendor Interface

Due to the lack of a secure Ada operating system and the
overhead associated with developing a secure kernel, a number
of the system modifications that must be made to meet security
requirements involve changes to the system and support software
(compiler, RSL, debugger, etc..). To implement these changes,
the applications developers will require extensive support from
the compiler developers. Thus, a fairly flexible interface
must be esfablished between the compiler vendors and the Ada
applications developers.

10. 14. 7 Prototype

To ensure that the security measures required to support the
development and operation of an Ada system have been properly
designed and implemented, a prototype should be built and used
to verify their correctness. The prototype will also provide
information concerning the impact on system performance due to
the overhead associated with performing the required system
security functions.

10. 14. 8 Compiler

Due to the lack of a secure Ada operating system and the
excessive overhead associated with a secure kernel, a number of
the system changes that are implemented to meet security
requirements involve modifications to the compiler and RSL.
These modifications might include adding software to the RSL to
provide an interface to any special-purpose security hardware
and software in the system.

It is important to assess the impact of these changes on other

56

REAL-TIME ADA PROBLEM STUDY 10/9/87

parts of the compiler and RSL and on the applications programs.
It should be noted that if modifications such as these are made
to the compiler and RSL after they have been certified, the
software must then be recertified before it can become part of
the system

10.14. 9 Software Requirements Analysis

During the Software Requirements Analysis Phase, the system
security needs must be reviewed to determine which ones can be
achieved based on the security capabilities of the Ada
development environment. Those security requirements which
cannot be met (due to the lack of a secure Ada operating system
or to the prohibitive overhead associated with a secure kernel)
must be identified for resolution later on in the system
development cycle. Failure to identify security issues early
on could result in extensive system design rework in later
development phases.

10.14.10 Preliminary Design

In the Preliminary Design Phase, those security issues that
were identified in the Software Requirements Analysis Phase
must be addressed. Solutions must be designed and incorporated
into the overall system design. if the solutions require
special-purpose hardware/software or changes to the system
software (compiler, RSL, etc.), then these issues should be
initially addressed during this phase. If these issues are
ignored until later development phases, the amount of effort
required to rework the system design increases significantly.

10. 14. 1 Personnel Resources

To develop a -secure Ada application, the required personnel
qualifications are much more intensive than for a non-secure
application. The project personnel must be experienced in the
design and development of secure systems, including the use of
special-purpose hardware and software to implement security
req.Lirements. They must also be familiar with the security
limitations placed on the system based on the choice of an Ada
compiler and RSL for a particular application. This knowledge
should be supplemented by technical support from the compiler
vendor.

Personnel with this type of background are hard to find.
However, if these people cannot be found, the project runs the
risk of not being completely responsive to the system security
requirements, thus making it difficult to obtain system
certification.

10. 14. 12 Cost

The workarounds that are required due to the lack of a secure
Ada operating system and the excessive overhead associated with

REAL-TIME ADA PROBLEM STUDY 10/9/87

a secure kernel can significantly increase the development cost
for a secure Ada application. These workarounds can include
modifications to the Ada system software (compiler, RSL, etc.)
and the addition of special-purpose hardware and software to
implement system security requirements.

REAL-TIME ADA PROBLEM STUDY 10/9/57

10. 15 DIVERSIT! IN IMPLEMENTATION OF APSE'S

The task of developing Ada software for computers integral to
weapon systems is a complex one, and would be impossible
without good support tools. The set of these tools to be used
with an Ada comniler is called an Ada Program Support
Environment (APSE), and the APSE has been the subject of much
study since the Ada language was specified.

One of the problems recognized very early by both the Army
Communications and Electronics Command (CECOM) and by the Air
Force was the need for standardized and portable APSEs. The
Air Force effort was lost in a funding problem soon after its
inception, and the CECOM effort, which resulted in the Ada
Language System (ALS), was terminated and made public domain.
Sonicraft, which contracted Softech to retarget the ALS to the
Intel 8086, tried the ALS and found tool performance below the
range of usability.

This lift the situation where each compiler vendor has marketed
its own version of an APSE, with each requiring training both
for users and for the host computer support engineers. This, in
turn, has made it far more difficult to transition from one
compiler to another during a project, a necessity all too often
brought about by other Ada problems [Problem #17 for example].

The extent of this problem depends upon the complexity of the
APSE that you now have and the one you are considering
acquiring. If one of the APSEs is the ALS, the problem is very
severe. Sonicraft jad to send three VAX system support
engineers to a two week cour-se just to learn to install and
configure the tools in the ALS. Users also needed training,
which was given by these three engineers. Then, because of the
extreme slowness of ALS operations (about a tenth as fast as
comparable operations under the DEC VMS operating system), a
major effort was required to try to "tweakO the ALS and the
underlying VMS parameters to effect a speedup. This big
investment in time and money was sacrificed when Sonicraft
abandoned the ALS.

Col. Wm. Whitaker (Ret), commenting on a WIS report at the
Washington Ada Symposium, stated that most programmers make do
with a very minimal support environment, and that many of the
exotic tools described in the literature either do not work or
are not widely used (or both). One study [Ref] defines the
minimal tool set needed as a screen editor and an interactive
debugger. You are indeed fortunate if your APSE contains a good
source-level interactive debugger [Problem #91, but many APSEs
contain tool sets which are quite complex, requiring training
for all project designers and host support people.

[Ref] S.J.H|anson and RR.. Rosinski, "Programmer Perceptions of
Productivity and Programming Tools', Communications of the ACM,
Feb 85

"59

REAL-TIME ADA PROBLEM STUDY 10/9/87

10. 15. 1 Reliability

The diversity in implementation of APSEs can hurt program
reliability during the transition from one APSE to another if
it occurs in the middle or near the end of a project. By this
time the application has grown complex enough that programmers
can become confused, and their unfamiliarity with the new APSE
offers just such an occasion. The more complex the new APSE is,
and the harder it is to learn, the more severe will this
problem become. A confused programmer is more apt to insert a
*bug", or program fault, which of course will by definition
reduce program reliability until it is found and corrected.

10.15. 2 Maintenance

The diversity in implementation of APSEs affects the program
maintenance if a switch in APSEs occurs right before delivery.
This is not as far-fetched as it may seem, because if system
performance meets specifications only marginally, as it did for
the Sonicraft MEECN project, an investment in an alternative
compiler may be made in parallel with the original one (as
Sonicraft has done more than once). If the alternative proves
to be better, a switch could be made.

The later in the program this switch is made, the more likely
it is that the customer has made some commitments toward system
maintenance that will have to be changed. The system
maintenance concept is a Critical Design Review (CDR) topic on
most programs, so at least some cost is needed to present a new
maintenance concept to CDR attendees.

10. 15. 3 Portability

Diversity in implementation of APSEs can hurt portability in
several ways. First, the APSE itself is probably optimized for
a particular host, so extensive rework would be required to
rehost it.

Second, Sonicraft found it necessary to tailor the application
code for both the ALS and the second compiler we used, the
Softech Ada Intel Toolset (AIT). Some of these work-arounds,
although correct Ada code, may not work on a third compiler,
and/or the third compiler may need tailoring of its own.

Third, although the compiler is by far the most complex tool in
the current APSEs, some of the other tools may not be portable,
even if the host computer is unchanged, because they are
strongly tied into the compiler in some way.

~60

REAL-TIME ADA PROBLEM STUDY 10/9/87

10. 15. 4 Training

Diversity in implementation of APSEs requires retraining of
application developers, host computer support personnel, and
engineers from other disciplines (Systems, Test, Quality, etc.)
who need visibility into the application code each time the
project is forced to change APSES.

10.15. 5 Tool Ose

Diversity in the implementation of APSEs tends to discourage
tool usage, at least for those tools not minimally essential to
get visibility into the application code and to be able to
manipulate it relatively easily. Sonicraft, having invested
heavily in training to use the wide range of tools in the ALS,
only to see that investment lost when the ALS had to be
d:opped, will not soon make another large investment.

10. 15.6£ Development Environment

Diversity in implementation of APSEs affects the development
environment because the user interface to the APSE is usually
very different when you go to a new APSE. Although the hardware
in the environment does not have to change, it is nonetheless
true that the APSE is the controlling mechanism of many of the
services that the hardware performs.

10.15.7 Vendor Interface

The diversity in implementation of APSEs affects the vendor
interface because the investment in training (especially for a
very complex APSE) tends to "lock in' a project to an APSE
unless a very serious limitation threatens the project.
In the experience of Sonicraft, this is bad for the project
because vendors tend to be much more responsive to project
needs if they know they are facing good competition from
another APSE vendor.

10.15.8 Compiler

Diversity in the implementation of APSEs limits the ability of
a project to switch compilers when an apparently better one
becomes available after one has already been used for a while.
This is because the investment in APSE training for the
existing compiler will probably be useless for the APSE that
comes with the new compiler, and additional time and money will
be needed for training in the new APSE.

.0. 15. 9 Facilities

~61

REAL-TIME ADA PROBLEM STUDY 10/9/87

Diversity in implementation of APSEs may increase facilities
costs if the new APSE requires a different host computer
configuration. Sonicraft experienced this when it purchased the
Alsys compiler to use to verify correctness of code before
submitting a compilation to the ALS. This was necessary because
of the ALS very slow compilations and sometimes puzzling
compile error messages. The problem was that the Alsys compiler
was not avai lable to run on the VAX host that Sonicraft was
using, so an additional host computer had to be acquired. (In
this 'case the host was an IBM PC/AT compatible, which was not
very expensive and which could be used for other purposes, so
the penalty was not severe.

10. 15. 10 Stability

Diversity in implementation of APSEs affects project stability
from the viewpoint of the customer especially. Although not as
drastic as a change in the specifications in the deliverable
system, .a change in the APSE does affect the maintenance
concept and does have some cost due to its change.

The customer is usually willing to change APSEs if it can be
shown that a change in specifications to the deliverable
system is the only alternative. Other than that, many customers
would probably rather have the project stability than a gain in
system performance that isn't really necessary.

S62

REAL-TIME ADA PROBLEM STUDY 10/9/87

10. 16 POOR PERFORMANCE OF ADA TOOLS

In recent years, a number of software support tools have been
developed for use on Ada development efforts. However, due to
the fact that most of these tools have been developed for
project-specific purposes or as a part of internal R&D efforts,
these tools have generally provided poor performance. Some of
the tools that have been developed include compilers, linkers,
importers, exporters, debuggers, editors, pretty printers, PDL
processors, library managers, and library software
(mathematical, etc.).

The poor performance of these Ada tools has had an adverse
impact in some areas of programmer productivity. The
programmers have had to expend significant effort to develop
workarounds in those (frequent) cases where the tools have not
performed as expected (advertised). The tools vendors have
provided poor documentation and inadequate tool support, and a
number of the tools have been delivered with bugs in them.

This situation should improve as the Ada software development
environment continues to mature and more tools users provide
fe &zack to the tool vendors concerning the performance of the
tools.

10. 16. 1 Efficiency

A number of the currently available Ada tools are immature.
The poor performance of these tools can have an adverse impact
on overall system efficiency. In particular, the performance
of the compiler currently has the greatest impact on system
efficiency. The compiler generates the object code for the Ada
applications programs and also generates the RSL code, which
operates in conjunction with the applications programs.

Two of the major problems to be addressed in the development of
Ada systems are the inefficiency of the object code generated
by the Ada compiler and the overhead associated with operation
of the RSL programs. The object code generated by the compiler
runs relatively slowly and uses an extensive amount of memory
when compared to the use of other programming languages for
embedded real-time applications. The RSL performs a number of
run-time functions for the applications programs, but also
generates excessive system sizing and timing overhead.

10. 16.2 Reliability

A number of the existing Ada software tools are immature. They
have not yet been proven by use in actual Ada system
development efforts and in some cases still have bugs in them.
Since the compiler-generated object code for the applications
programs and the RSL both reside in the target machine, any
bugs that are present in these programs will reduce overall
system reliability.

363

REAL-TIME ADA PROBLEM STUDY 10/9/87

10. 16. 3 Benchmark

Because a number of the existing Ada software tools provide
poor performance, it is important to perform extensive
benchmarking of the tools before deciding whether or not to use
them for a particular project. Benchmarking provides an
evaluation of the actual performance of a tool in a specific
development and applications environment.

Benchmarking also helps to provide an evaluation of claimed
(expected) tool performance vs. actual performance.

For example, the execution time required by the RSL to process
an interrupt can have a major impact on system performance. A
twenty percent increase in the time required to handle an
interrupt can adversely impact system performance, particularly
if the system processes a large number of interrupts.

10. 16. 4 Optimization

The poor performance of a number of the existing Ada software
tools currently forces the applications developers to perform
extensive Ada optimization to meet system requirements. This
optimization can include the use of special-purpose hardware
and software, modifications to the compiler and RSL, and other
techniques. However, while increasing overall system
performance, optimization can also have an adverse impact on
certain system characteristics. Extensive optimization can
reduce system reliability, maintainability, and portability
while increasing system complexity.

10. 16.5 Development Environment

The poor performance of the Ada software tools that comprise
the applications development environment can have an adverse
impact on project productivity. For example, the compilation
speed of an Ada compiler can make a major difference in the
productivity of the development effort. A compilation speed of
100 lines per minute as opposed to 200 lines per minute can
cause a significant reduction in programmer productivity,
particularly if a large number of recompiles are performed.

10. 16.6 Vendor Interface

Due to the poor performance of some of the available Ada tools,
and because some of the tools still have bugs in them, it is
important to establish an interface with the tool vendors.
This interface will allow the vendor to provide support in
fixing bugs in the software tools and will also provide a
source of information concerning ways to obtain optimum
performance from the tools.

S64

REAL-TIME ADA PROBLEM STUDY 10/9/87

10. 16.7 Cost

The poor performance of a number of existing Ada tools can have
adverse impacts on system performance and programmer
productivity, thus increasing the overall system development
cost.

10. 16. 8 Schedule

The poor performance of a number of the existing Ada tools dan
have an adverse impact on system performance and programmer
productivity, thus increasing the length of the development
schedule.

~65

REAL-TIME ADA PROBLEM STUDY 10/9/87

10. 17 DIFFERENCE IN BENCMARKING ADA S!STES

Benchmarks can be of two main types, those that are used to
time and size portions of application code (usually using
breadboard hardware) and those that are used to evaluate
compilers and other support tools. It is the benchmark
software for support tools that is addressed in this problem.

Ada is a very powerful, but also very new, programming language
for embedded, mission-critical software. Whenever an
application is being planned that is significantly different
from previous experience in the software organization
performing the task, benchmarking is normally relied upon to
scope out the job. Unfortunately, the very constructs that
make Ada a valuable embedded software language are hard to find
in widely available benchmarks.

The benchmark most often cited by compiler vendors seems to be
the Dhrystone, which has none of the new Ada constructs
(tasking, interrupt handling, direct addressing, etc.) which
make it'superior to languages like Pascal for embedded systems.
In comparison to real application code, such as the Sonicraft
MEECN system, the Dhrystone benchmark is too optimistic in both
compilation speed (lines of code per minute) and in object code
size (bytes per line of source code). Errors could be a
problem if they are not discovered until application code
begins to emerge somewhere around the end of the Detail Design
Phase. The project is supposed to be ready to code very
heavily at that point, yet will find itself with undersized
computer resources, both for the host and the target, if the
Dhrystone numbers had been believed.

One approach taken to deal with this problem was reported by M.
Kamrad of Honeywell at the Jan 87 SIGAda Conference. He
recommended postponing the decision of how many processors to
put in the system and what software functions run in each until
the coding has matured enough that its final size and timing
requirements are known.

According to D. L. Doty (Ref], this can be a long wait. Be has
observed size-estimate errors greater than 100 percent at the
RFP stage, 75 percent up to the Preliminary Design Review, and
50 percent up to the Critical Design Review.

But all this leaves the compiler vendor in a quandry if he is
trying to introduce a new compiler. Unless he can test it
against a real application in Ada which is already running
under another Ada compiler, it will be difficult to convince
potential customers that this new compiler can really handle an
embedded Ada application.

3 66

REAL-TIME ADA PROBLEM STUDY 10/9/87

[Ref] D. L. Doty, P. J. Nelson, and K. R. Stewart, "Software Cost
Estimation Study: Guidelines for Improved Software Cost
Estimating" (Vol 2), Final Technical Report by Doty Associates,
Inc., for Rome Air Development Center (RADC-TR-77-220),Griffiss
Air Force Base, NY, Aug 77, 145pp as cited by: W. Myers, "A
Statistical Approach to Scheduling Software Developmento, IEEE
Computer, Dec 78

10.17.1 Efficiency

For applications where target efficiency is important, the
availability of an appropriate benchmarking program early in
the development cycle is very important. Efficiency is needed
where the computer resources (memory size and speed of
execution) are limited by physical size, weight, power or
cooling requirements. In mission-critical s-oftwore applications
it is not unusual to be limited by all these requirements.

The inability to differentiate between compilers that may be
suitable for an application, or, worse, false information about
compiler performance on that application, can damage the target
efficiency actually achieved quite severely. In some cases it
may be necessary to buy a second compiler that generates more
efficient code.

10. 17.2 Maintenance

The use of inappropriate benchmarks to select a compiler, thus
defining target code efficiency, and to specify embedded
computer resources can lead to a situation where considerable
optimization is required to get everything to fit in memory and
still execute within timing constraints. Compiler optimization
can cause problems if it is unique to a project, causing
surprises in the maintenance phase of the life cycle when
seemingly straight-forward changes are inserted.

More serious problems occur when obscure source code,
especially "tricky" code that depends on a side-effect to work,
is used to meet the system requirements. Program
maintainability depends mostly on program understandability
[Refl, so obscure code is therefore very difficult to maintain.
[Ref] G.M. Berns,"Assessing Software Maintainability",

Communications of the ACM, Jan 84

10. 17. 3 Expandability

The use of an inappropriate benchmark can lead to the selection
of a compiler that unnecessarily wastes embedded computer
resources and to specifications that are much tighter than
anticipated. Even when this does not cause the project to fail
by requiring massive rework, the available resources are
invariably stretched almost to the breaking point in the
process of solving the problems.

67

REAL-TIME ADA PROBLEM STUDY 10/9/87

In this situation there is simply nothing to spare for future
expandability unless the procuring agency had specified unused
computer resources to be in the delivered product, and had the
further strength to avoid sacrificing this reserve when the
project got in trouble because of the inappropriate benchmark
programs.

10. 17. 4 Tool Use

The use of inappropriate benchmarks can ruin the selection of
the most important tool on the project, the Ada compiler
itself. At the present state of technology there is not often
much choice available in compilers, but the differences between
them are oft-.n quite significant. If the wrong one is selected
because it did a good job on an inappropriate berchmark
program, the project will usually suffer, especially if it is
later proven that the selected compiler has limitations that
prevent it from supporting the specified software performance.

10. 17. 5 Benchmark

The problem subcategory SENCHMARKING here refers to the sizing
and timing estimates obtained on real application code of
critical routines or algorithms. Usually these benchmarks
differ from the deliverable code only in their more thorough
treatment of special cases or in exception handling (if they
differ at all). The support code benchmarks which are being
discussed in this problem treatment are general-purpose
routines often cbtained from 'n outside source. The best
support code benchmarks are usually widely used in government,
industry and academia by designers interested in evaluating Ada
compilers.

Inappropriate support code benchmarks can, as discussed
elsewhere in this problem, cause application developers to
obtain an unsuitable compiler whose performance is over-
estimated by the support code benchmark. This must be later
corrected by reallocating software functions to hardware
(extensive rework), purchase of a higher performance compiler,
or optimizing source code. Sometimes it requires some
combination of these to recover from the problem.

4hen the compiler must be replaced this invariably impacts any
work that has been performed in application benchmarking since
this work is done in the earliest possible design phases. In
fact it is often the application benchmarking that demonstrates
that the compiler benchmark was inappropriate.

10. 17. 6 System Sizing

The use of inappropriate benchmarks can lead to errors in
target processor memory requirements that can be quite
substan.ial. If the application happens to be one where memory
is extremely expensive or even impossible to add Cusing then-

3 6a

REAL-TIME ADA PROBLEM STUDY 10/9/87

current technology), this could force an abortion of the
proj ect.

Projects with radiation-hardened memory requirements, in which
reliability goes down in direct proportion to memory size, and
projects with severe size, weight, power and cooling
limitations (such as on-board processors in a small missile),
are especially vulnerable to memory sizing problems.

10. 17. 7 System Timing

When a compiler produces more object code than expected (bytes
per line of Ada source code), the execution speed of a
functional module also increases. Experience at Sonicraft with
code generated using a steadily-improving compiler indicates
that the relationship is quite direct.

In systems where hardware cannot be added to replace Ada
routines that are found to be too slow, and/or where the
permissible amount of assembler code has already been used for
Ada replacements, this can be disastrous. Ese of an
inappropriate benchmark, by delaying the time at which the
speed problem becomes known, can cause either or both of these
situations to occur.

10.17. 8 PDL Processor

The PDL processor is often used to help make target memory and
speed estimates during the Preliminary Design Phase and
especially during the Detail Design Phase. The use of an
inappropriate benchmark can throw off the resulting estimates
enough to force a substantial rewrite of the PDL to meet system
requirements.

10.17. 9 Compiler

The use of an inappropriate benchmark can result in the
selection of a less-expensive compiler in the mistaken belief
that it is good enough to perform the Ada application at hand.
in some cases it can even mislead one into thinking that then-
current Ada compiler technology is adequate, when in fact an
Ada waiver or a substantial reduction of the functionality
assigned to software in the Software Requirements Analysis
Phase may be needed.

10.17. 10 Software Requireuents Analysis

The use of an inappropriate benchmark usually leads to overly-
optimistic estimates of what can be accomplished in software
using the available target computer resources. This can force
a project to regress back to the hardware/software allocation
of system functions when the truth is finally learned. If this
happens fairly late in a project, and/or if the project
deadline cannot afford major delay, this would be a fatal blow.

S69

REAL-TIME ADA PROBLEM STUDY 10/9/87

Similarly, cost constraints couid preclude the major rework
that might be needed.

Benchmarks can also cause the host computer, which is usually
selected in this Phase, to be grossly. undersized. This could
lead to very long turn-around times for compilations unless
unplanned host capacity can be added. This kind of activity
may not kill a project, but has been known to be detrimental to
the careers of those responsible for the error.

10. 17. 11 Preliminary Design

Errors caused in target memory sizing and target execution
times of major functions become part of the Software
Requirements Specification if not discovered before the
Preliminary Design Phase is completed. Since application code
does not appear in significant quantities during this Phase
(usually), erroneous benchmark programs can cause considerable
damage here.

10. 17.12 Detail Design

Erroneous sizing and timing specifications caused by the use of
inappropriate benchmarks are often discovered in the Detailed
Design Phase, usually when preparing a Critical Design Review
demonstration of an early software prototype. As such, the
error is usually associated with this Phase, when in fact the
benchmarking normally occurs in earlier phases.

A discovery of major specification errors this late in the
program costs considerably in both schedule time loss and in
rework costs. If the system hardware/software functional
allocation must be severely changed, this benchmarking problem
could easily be fatal to the project.

10. 17. 13 Facilities

Inappropriate benchmarks can cause compile times on the host
computer selected to be underestimated by very large amounts.
Since these most computers often have long lead times, require
special power and air conditioning, and are not inexpensive,
this can be a serious problem.

If the additional facilities are not purchased, the increased
compile turn-around time will reduce programmer efficiency to
the point where more staff might be added, reducing efficiency
even more.

10. 17. 14 Cost

The costs that can be incurred by using inappropriate
benchmarks to select the Ada compiler and to allocate functions
between hardware and software come from two sources:

70

REAL-TIME ADA PROBLEM STUDY 10/9/87

First, the target computer design may need rework because it
has insufficient resources to meet the specifications which the
benchmarks had indicated were achievable.

Second, the host computer may be too slow to support the
project because the benchmark had given erroneous values -of
lines of code compiled per minute compared to what was being
experienced later in the program when application code was
compiled.

10.'17. 15 Schedule

An inappropriate benchmark can hurt schedule mainly by
misleading the designer as to what embedded computer resources
are needed to meet the software specifications, perhaps causing
rework all the way back to the functional allocations between
hardware and software.

A second, usually less important, schedule problem can be
caused by believing that the compile speeds attained using the
compiler benchmark can be attained using the application code.
This causes the host computer to be undersized, giving compile
turn-around times that are much longer than may be needed to
produce the Ada code in a timely, efficient manner. When
compile turn-around gets to be overnight, programmers usually
respond by doing more manual checking of submitted code,
causing delays in addition to those caused by simple
inefficiency.

10. 17. 16 Estimation

The whole purpose of benchmarking is to estimate the target
computer resources and the host computer resources needed to
satisfy system design constraints. A benchmark that makes very
large errors in doing this is an obvious problem.

S71

REAL-TIME ADA PROBLEM STUDY 10/9/87

10. 18 LACK OF ADA SOFTWARE DEVELOPMENT TOOLS

Although a number of software tools have been developed for use
in Ada environments, there is buill a variety of tools that are
desirable to further improve the productivity and performance
associated with Ada development efforts. Some of these tools
are currently in various stages of development (planning,
design. implementation, testing).

Some of the tools that would be useful for Ada efforts include:

* Ada Design Generators
* Ada Code Generators
* Ada Source Code Analyzers
* Ada-oriented Debuggers
*-Ada Syntax-directed Editors
* Ada Cost Estimation Models
* Ada Project Management Tools
* Secure Ada Operating Systems
*,Automated Ada Test Tools

The lack of Ada tools affects the overall productivity of
development efforts. The availability of these tools would
decreases the number of development activities that are
currently performed manually. It would also reduce the overall
development effort by reducing the requirement for applications
programmers to develop their own project-specific tools. The
availability would also improve the consistency of the products
developed on Ada projects and would help impose and enforce
project methodologies and development standards.

10. 18. 1 Reusability

The current lack of Ada software development tools forces the
applications programmers to develop their own project-specific
tools to perform those functions. However, these tools are
generally not built to be reusable in a variety of different
applications. This is due to the additional cost of developing
a reusable tool as opposed to developing a tool which is only
to be used on a particular project.

10.18.2 Development Environment

In an effort to provide a more powerful and flexible
environment for the development, a number of Ada software tools
have been developed and more are being developed. But due to
the immaturity of Ada, there are a number of tools that are not
yet available which would prove to be very beneficial for Ada
development efforts. Even though these tools are not yet
available, some of them are in various stages of development
(conceptualization, design, implementation, test). These
tools include:

B72

EAL-TIME ADA PROBLEM STUDY 10/9/87

* Ada Cost Estimation Tools

* Ada-oriented Debuggers
* Ada Project Management Tools
* Secure Ada Operating Systems
* Automated Ada Test Tools
*Ada Source Code Generators
*Ada Design Tools

As these tools become available to the Ada applications
programmers, a number of the Ada development activities that
are currently manual or partially automated.will be fully
automated.

10.1& 3 Cost

The current lack of Ada software development tools forces the
applications programmers to develop project-specific tools
which perform the required functions. The development of these
tools increases the overall cost of the Ada development effort.

10.18. 4 Schedule

The current lack of Ada software development tools forces the
applications programmers to develop their own project-specific
tools which perform the specific functions. The development of
these tools can lengthen the overall system development
schedule.

73

REAL-TIME ADA PROBLEM STUDY 10/9/97

10.19 ADA LANGaAGE COMPLEXITY

The complexity of the Ada language makes it difficult to learn,
use effectively, and test (validate). The Ada language
requires extensive training for programmers to learn language
syntax, proposed development methodologies, software
engineering standards, and implementation issues for real-time
embedded systems.

The Ada language is also difficult to use effectively and
efficiently. For example, the current inefficiency of Ada
compilers creates an environment where unchecked use of certain
Ada features (tasking, generics, etc..) can cause significant
impacts on system performance. Also, Ada development
methodologies and programming standards/conventions are still
being established.

The power and complexity of the Ada programming language can
also make it difficult to test and validate an Ada system. The
functional and performance impacts of the RSL, a very complex
piece of software, play an important part in the testing
process.

10. 19. 1 Verifiability

The complexity of the Ada programming language and run-time
environment makes it difficult to verify Ada systems.

While the Ada programming language *has a number of features
which provide valuable support for state-of-the-art software
engineering methodologies, the complexity of the language
(packages, tasking, generics, etc..) makes it a very difficult
language to verify for program correctness.

Zn the target environment at run-time, an applications program
can perform tasking in a multiprocessor system, create, access,
and deallocate portions of memory, and access specific memory
locations. Also, the RSL provides a number of run-time
functions such as task scheduling, memory management, and
others. These functions combine to create a complex run-time
environment, in which a large portion of the code resides in
the RSL. The complexity of the RSL, combined with the fact
that most applications developers are unfamiliar with the
operation and performance of the RSL, makes it difficult to
verify an Ada system.

10.19.2 Complexity

The Ada language provide a number of language features
(packages, tasking, generics, etc..) which support state-of-
the-art software engineering methodologies. However, the use
of these features greatly increases the complexity of the Ada
language and makes the language much more difficult to learn
and use effectively.

3 74

REAL-TIME ADA PROBLEM STUDY 10/9/87

The complexity of the Ada language, the variety of different
compiler implementations, and the extensive run-time overhead
associated with the RSL are among the issues that must be
addressed by an Ada applications programmer. These issues
require that an applications programmer have a good
understanding of the Ada language and a working knowledge of
the target (run-time) environment in order to effectively use
Ada to develop real-time embedded systems. If an applications
programmer does not have this knowledge, there is a high
probability that the developed system will be inefficient and
difficult to verify.

The extensive amount of Ada training that is required for Ada
applications programmers is a direct result of the complexity
of the language. The training helps to ensure that the
applications programmers use the Ada language as it was
intended to be used, understand the Ada implementation details,
and address critical real-world issues in the system design.

10.19.3 Detail Design

The complexity of the Ada programming language can increase the
amount of effort required in the Detailed Design Phase of Ada
projects when compared to other languages. The Detailed Design
Phase is the point in the project where the proposed Ada
implementation approach is developed. It is also the point
where the developers begin, in detail, to assess the impact of
Ada implementation decisions on system performance.

Due to the complexity of Ada, the resulting detailed design
should be reviewed extensively to maximize the effective and
efficient use of the Ada language, particularly in light of the
system performance problems associated with Ada systems. The
applications developers should also identify as many of the
system optimization requirements as possible and incorporate
them into the system design. These reviews can significantly
increase the effort required to develop a detailed design for
Ada projects.

10.19.4 Personnel Resources

The complexity of the Ada programming language requires that
the applications programmers have previous experience with
high-level languages (such as Pascal), and, in particular,
languages that are commonly used in the development of real-
time embedded systems.

73

REAL-TI- -4E ADA PROBLEM STUDY 10/9/87

10. 20 CUSTOMIZATION OF RUN-TI&E SUPPORT LIBRA=!

When an Ada compiler and its respective run-time support code
is validated, it is on a target system specified by the
compiler developer. The problem is that an applications user of
the compiler will usually have a different configuration
(memory map, I/O map) for their particular system. Also, the
user may desire different default values for their run-time
application, such as the task stacks. Instead of a four
kilobyte default, as experienced on Sonicraft's MEECN project
they may elect to have a three kilobyte default. Therefore, the
acpications user must modify or customize the run-time support
code. To get this type of customization the user will need to
recompile the run-time support library. If the user desires to
perform this task himself, he must usually purchase the source
code rights for the RSL and train some people on how to perform
the required task. The other option is to contract the vendor
to make the required modifications. Either course of action
will add more cost to the development of the application
program. ,

Sonicraft discovered on its own Ada projects that the ALS run-
time software needed to be reconfigured for memory map
allocation, interrupt vector addresses, and Input/Output
addresses for Intel's PIC and PIT chips. Further, RSL code had
to be repackaged to allow for better selective linking and
modified to remove unused 8087 code and to reduce interrupt
overhead.

10. 20. . Maintenance

Customization of the Run-time Support Library will increase the
cost to maintain the RSL and the application program. For
example, additional documentation will be required for any
changes required to support the execution of the application
program.

10. 20. 2 Portability

Whenever software is customized to apply to a unique system
configuration it sacrifices portability. Thus, the modification
of the run-time support software will impact any efforts to
import the application to another Ada environment.

10. 20. 3 Reusability

Due to the customization of the run-time software, the
reusability is reduced if the system configuration changes. If
configuring the run- time software can be done by setting
pragmas in the application source code the loss of reusability
could be minimized.

3 76

REAL-TIME ADA PROBLEM STUDY 10/9/87

10.21 LACE OF EXPERIENCED ADA PROGRAMMERS

As we in the Ada community have heard so often, Ada is "not
just another high order language", but is a whole new approach
to software design. Indeed, many respected individuals feel
that the major contribution that Ada will make is to train
programmers in the use of modern software design techniques
[Ref 1]. When we speak of the problem of not enough experienced
Ada programmers, it is in this broader context that we see the
problem.

Experience at Sonicraft is that a fresh graduate with a CS
degree can learn Ada syntax well enough in about three weeks to
start making useful contributions to a project. Despite the
complaints about Ada being "too complex*, it turns out in
practice that some of the complex features need only be used by
a small percentage of design team members.

Teachi~ng a methodology takes far longer in the experience of
Sonicraft. Formal courses typically go for two or three weeks
at two or three hours per day (with homework), but it takes
actual project experience before most people really understand
the value of a methodology and become advocates of it. Without
this kind of full support, most methodologies are reduced to
being an extra paperwork burden in the minds of the
programmers.

Formal courses are another problem because hiring is usually
done over a period of time, rather than hiring the first few
applicants who meet the minimum qualifications. Putting
untrained people on the job while they are waiting for the next
class to start brings on the infamous Brooks' Law effects,
where the addition of additional programmers slows down the
team [Ref 2]. This happens because the experienced people must
spend considerable time explaining to the new people some of
the things they would normally have learned in the classes.

Finally, the supply of experienced Ada programmers is not easy
to measure. At the November 86 SIGAda Conference, for example,
it was reported that the biggest shortage in Ada-trained people
is among managers. The supply of programmers was greater than
the number of people actually doing Ada work. This result
flies in the face of experience in hiring at Sonicraft, where
over a four year period over forty designers were hired to do
Ada work and only one of them had any Ada experience on the
job. Very few of the CS majors had a course that even used Ada
until about 1986.

This apparent discrepancy between the reported oversupply and
the experienced shortage of Ada programmers could have been a
local shortage or it could have been pure chance. But it also
could have been caused by large firms training massive numbers
of people in Ada in anticipation of future Ada contracts. This
would indeed cause an oversupply to be measured if one counted

~77

REAL-TIME ADA PROBLEM STUDY 10/9/87

everyone who went through these-courses as an experienced Ada
programmer.

(Ref 1] F.P. Brooks, "No Silver Bullet", IEEE Computer, April 87

[Ref 21 F.P. Brooks,"The Mythical Man-Month", 1975, Addison-
Wesley, Reading, Mass.

10. 21. 1 Efficiency

When Sonicraft implemented the MEECN Ada project, there was a
memory sizing problem discovered after much of the code had
been written. By having the most experienced team members go
over the code of the less experienced members in code
walkthroughs, a very substantial savings in both target code
size and run time was achieved.

Ada is a complex language. While it is true that after only a
few weeks a programmer will know the syntax well enough to do
useful work, the sections of code that require detailed Ada
knowled.oe to make best use of Ada features for efficiency are
best left to the more experienced Ada programmers.

This is also a management experience problem, since other high
order languages rarely show this much sensitivity to
experience. A manager doing his/her first Ada project can
easily misassign critical code sections, which then must later
be reworked.

10. 21. 2 Risk

The longer-than-normal delay between hiring an inexperienced
Ada programmer and the time that he is "fully productive"
(usually defined as spending less than ten percent of the time
in training or education-related tasks) increases the risk to
projects being done in Ada. Ada projects are hard to estimate
accurately [Problem #233. Unless the developer has trained a
pool of Ada programmers, who then may have been assigned to
interruptible tasks (such as overhead R&D projects), they may
find it impractical to train and then add the required staff in
time to meet project delivery dates.

This aspect of the problem is more critical when the project is
fairly small, making the duration of each phase only a few
months. If an entire phase of the life cycle elapses before an
underestimated project is staffed with fully trained Ada
designers, the customer will probably consider the resulting
schedule slippage a major one.

10. 21. 3 Training

Inexperience affects training in methodologies because a mind-
set is required to use Ada properly. In this regard it is
often better to train fresh Computer Science graduates than

S78

REAL-TIME ADA PROBLEM STUDY 10/9/87

experienced FORTRAN programmers who have never learned one of
the structured methodologies.

10. 21. 4 Tool Use

Especially because of the inefficiencies of current Ada
compilers (Problem #71, the use of tools like profilers (they
tell how often each line or code segment is executed, helping
to direct attention to the often innocuous code that is
devouring the available computer resources) is important.

10. 21. 5 Reviews

Because of the complexity of the Ada language, it takes about a
year, in Sonicraft's experience, to acquire expertise in the
areas needed to write consistently efficient source code. Peer
reviews in the form of structured design or code walkthroughs
are essential for the work of the inexperienced Ada programmers
especially, but if the project has few experienced Ada
programmers available they could spend so much time in reviews
that little work gets done. This is significant because they
regularly produce two to three times as much as new graduates
with basic Ada and methodology training.

10.21.6 Method Type

Any new methodology is easier to learn for a person who already
is fully trained in the use of at least one other because of
the "mindset" problem that needs to be overcome. Experienced
Ada programmers are almost certain to be trained in a
methodology [Problem #21 Definition], whereas those
inexperienced in Ada are frequently not.

Since some methodologies are harder to learn than others
(Jackson seems harder than Yourdan, for example), this could be
a factor in selecting a methodology if few on staff had ever
learned one.

10.21.7 Document

Ada has a number of new constructs that affect what had once
been fairly standard concepts in documentation. As an example,
how does the concept of Visibility affect the definition of
Module Coupling? (Ref) How would you show concurrent tasking on
flow diagrams? What symbols do you use to show tasking or
packaging?

Even experienced Ada programmers have difficulty answering
these kinds of questions, and the problem gets worse with
inexperience in Ada.

(Ref] S.L.Watson,"Ada Modules*, Ada Letters, vii. 4-79 to 4-84,
1987

879

REAL-TI.H ADA PROBLEM STUDY 10/9/87

10. 21. 8 Benchmark

The Ada inexperience on a project could invalidate some of the
code benchmarking done on breadboard or brassboard hardware
because of the unfamiliarity with the more complex Ada
features. The area of hardware interfaces is where many of
these features are found, so it might be easy to be
fooled as to what iz raly happening during a test.

bonicraft was forced to assign an experienced Ada software
encineer 4ull time to tha brassboard to make sure that all
benchmarks were done correctly.

10. 21. 9 Optimization

With embedded computer resources limited by system size,
weight, power and cooling constraints, it is to be expected
that any delivered Ada code will be compiled with the optimizer
turned on. It is true for any language that optimization
causes, subtle changes to the way things work, but for Ada
compilers with little field experience the changes can be more
no ticeable.

Inexperienced Ada programmers, who may be fully occupied in
trying to understand what happens normally, may miss some
important changes when optimizing.

10. '2.. 10 System Sizing

Inexperienced Ada Dogrammers do not yet understand the
language well enough to pick the most size-efficienc constructs
available. In the experience of Sonicraft, they are usually
satisfied when they find anything that seems to work, and it
takes a review by more experienced peers to suggest more
efficient approaches.

10. 21. 1 System Timing

Similar to the system sizing discussion, inexperienced Ada
programmers profit a great deal from suggestions from more
experienced Ada programmers to speed up their code as required.
Often this involves the use of tools, such as the profiler
LProblem 421, Tool Usage), with which they may not yet be
familiar.

10. 21. 12 PDL Usage

'ven before coding begins the price of Ada inexperience on a
project surrfaces. Early in the Detail Design phase they are
expected to generate documentation using a Program Design
Language PDL), which on Ada projects is normally a compilable
Ada syntax with a few key provisions added.

10. 21. 13 Non-Ada Software

1'! !I

REA.-TIME ADA PROBLEI STUDY 10/9/87

Ada software usually must interface with another language, such
as Assembler, in an embedded microprocessor project. Even if
they are familiar with the other language, designers
inexperienced in Ada are open to additional problems as they
try to understand this interface.

10.21.14 Vendor Interface

One of the difficulties experienced at first by Sonicraft was
the interface to the Ada compiler vendor. As one of the first
in industry to attempt a mission-critical weapon system
development in Ada, Sonicraft had no one with Ada experience.
Since no Ada compilers existed that could meet the system
requirements, Sonicraft contracted to Softech to retarget the
Army ALS to the Intel 8086 processor.

While Sonicraft engineers understood what they needed to
accomplish, having had experience with other embedded
microprocessor systems, they found it very challenging to
express their requirements in Ada terms.

Obviously the Sonicraft experience was not unique, because one
of the issues dealt with in 1983, fast interrupts, was still a
hot topic at the January 87 meeting of the Ada Run-Time
Environment Working Group (ARTEWG) of the AC4 SIGAda.

10. 21. 15 Prototype

The parts of the Ada language learned most quickly by
inexperienced Ada programmers are those that are basically
Pascal language commands with a slightly different syntax. The
kind of commands needed to interface with prototype hardware,
however, are not of this variety, and can be a major source of
problems to inexperienced Ada programmers.

10.21. 16 Personnel Resources

One of the hardest things to do for a software project leader
is to staff the job with the right number of designers at each
Phase of the development cycle. This is true for any real-time
project, especially where the software is fairly complex. The
lack of a good supply of experienced Ada programmers who can be
quickly brought in can make this staffing problem one of the
most difficult tasks on the program.

10. 21. 17 Cost

-: stands :o reason' that designers experienced in the language
of the application will be, in general, more productive. This
is espec~ally true of Ada, where the complexity leads to rich
rewards when properly used. The lack of a good base of
experienced Ada programmers means not only that these benefits
will be largely unattainable for some period of time, but also

' i i a I l II 8l

?ZAL-TIME ADA .RC3LfLM STU DY 10/9/87

that costs r:~usz -e incurred fd'r training in order to ever
realize these potential savings.

Worse yet, mistakes due to inexperience in Ada can be made in
the early phases [Problem 421 Software Requirements Analysis)
that can increase costs by a factor of two or more if not
caught quickly enough.

10. 21. 18 Schedule

Whenever costs :i'e unexpectedly, schedule problems naturally
fzl!zw because stafinc requirements go up unexpectedly. If Ada
-nexperience ca:. =au.se cost problems, then it also can surely
make so-lution o. tnem very painful: where do you find the
experienced Ada programmers you need to increase your staff?
And what happens to your schedule if you have to hire
inexperienced people and stop to tr '. them?

10. 21. 19 Customer Relations

As noted' in -he Problem Definition, the lack of experienced Ada
programiers is especially severe in the management ranks. Since
the procuring agency musz assign a manager to interface with
the applications software organization, it follows that the
agency will have difficulty finding a good manager who also
happens to know Ada.

Customer relamicns are best when there is open communication
between =he ag.enc; an i':s conzractors, and there can be little
cmunize:!on z- =no zigeny manager doesn't understand the Ada
prcclems being :aced.

10. 2 1.. 20 Stabili y

As noted previously [Problem "21, Software Requirements
Analysis], the lac. of an experienced Ada cadre will probably
Lead to moor es:imat:es of the embedded computer resources
needed to peororm software functions in Ada. When this is
realized in later design phases, changing the requirements is
one of the few ontions available that are powerful enough to
address the serious problems that result.

The instability in requirements, both for hardware and for
software, is the direct result of the lack of experienced Ada
designers in t.e early phases, even though this may be hard to
recognize. 3y 'the time the problem is manifested, the staff has
probably gotten fairly good with Ada, so that is not the first
problem you migh= -.ink of when someone asks, "Where did we go
so wrong?"

~82

REAL-TIME ADA PROBLEM STUDY 10/9/87

10. 22 EXTENSIVE ADA TRAINING R. OIREMENTS

The complexity of the Ada programming language and the system
development and run-time environments results in extensive
training requirements for Ada applications programmers.

To fully prepare the applications to develop Ada software a
variety of training should be provided at different levels
throughout the various phases of the project. Training should
be provided at a minimum at the following levels - Senior
Technical StafZ, Junior Technical Staff, and Management.

The training courses to be offered should be selected according
to the type and level of personnel being trained. The
technical staff members should be offered all or some of the
following courses:

* Ada Language Overview
* Advanced Ada Language Issues

"* Ada Development Methodologies
* Ada Implementation Issues
* Ada APSE Issues

The management staff should be offered the following courses:

* Ada Language Overview
* Ada Cost/Schedule Estimation and Tracking.
* Ada Development Environment
* Ada Productivity Issues

Ada training costs are high and a large amount of time is
required to train the programmers. From 3 - 12 weeks should be
allotted for the technical staff and from 1-3 weeks for the
management staff. The training courses should be scheduled to
coincide with the proposed project staffing plan. It should be
noted that it is more difficult to retrain non-Ada programmers
than to train new programmers.

10. 22. 1 Training

One of the major issues to be considered in the development of
real-time embedded Ada applications is the extensive amount of
Ada training that is required for project personnel. This is
due to the following reasons:

* Complexity of the Ada programming language and run-time
environment* Current immaturity of the available Ada tools

* The extensive system optimization required to develop a
real-time, embedded Ada application

* The current shortage of experienced Ada programmers
(those who have actually developed Ada applications)

83

.'-.-TI.. AA ?:;RCS-ZM STUDY 10/9/87

The reauired Ada training must be provided to variety of
project personnel to include senior technical staff, junior
technical staff, and management. Different courses must be
provided to the different project personnel to correspond to
their experience levels and project responsibilities. The
training plans should also reflect the proposed staffing plan
and project personnel experience profile.

The :.aininc should also reflect the major software engineering
issues for the pazticular application being developed. It is
i.t=prtanz to include courses which address Ada develooment
methodologies (using Ada as it was meant to be used),

pIementation issues, and real-world issues
(probl ems/solu tions).

10. 22. 2 Cost

The extensive training required for Ada projects can
sioniiicantly increase the system development cost. This is
due to the recuirement to provide a number of different courses
(languag _ issues, implementation issues, methodologies,
cost/schedule tracking, etc..) for a variety of levels of
pro:ect personnel (senior technical staff, junior technical
staff, manacement). These courses are generally expensive and,
depending on the project staffing plans, must sometimes be
given a number of times to coincide with each influx of new
people on the project.

i0. 22. 3 Schedule

The extensive training requirements for Ada projects can
soriezimes have an impact on the project development schedule.
This is due to the number of courses that must be offered, the
.Iength of the courses, and the number of times that the courses
mu.st be offered (to coincide with each influx of new people on
-he project). To minimize the potential schedule impact of
this training, the required training time should be included in
"he project schedule estimates.

84

REAL-TIME ADA PROBLEM STUDY 10/9/87

10. 23 INACCURACT OF C/S ESTIMATE FOR ADA PROGRAM

Most of the Ada problems recounted here cause cost/schedule
perturbations for embedded mission-critical applications
(Problems #1,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,
23, 24, 25, 26].

Because of the pervasiveness of the influence of almost every
problem on cost and schedule performance, the task of
estimating cost and schedule performance becomes even more
complicated. Not only must you understand enough about
software cost/schedule estimating, but you must also understand
enough about the additional problems you get in Ada. This Ada
problem knowledge is a very rare commodity today, which is one
of the reasons this report is being written.

In an effort to help, there have been extensions to one of the
most popular cost models, COCOMO [Ref 1], that attempt to
accou)t for some of the better-known Ada problems [Ref 2].
These include the instability of the compiler (major revisions
every six months being the present norm) and the extra time it
takes to train Ada programmers.

Lven someone who has lived through the Ada problems might be
hard-pressed to estimate their cost/schedule effects on a new
project. The only real way to do this is to have someone in
control of the project who understands the pitfalls well enough
to avoid them, making their cost/schedule effects near zero
(since avoidance costs are usually small).

But not all Ada-specific cost/schedule factors can be called
problems. After all, the ultimate reason to use Ada is to save
money, not to lose it. When a steady-state condition is
reached after a few years of using Ada, developers should find
the costs much improved. But again, since very few have reached
this state, the actual gains are very difficult to estimate.

But even when all Ada-specific cost/schedule influences can be
accounted for, which may be years in the future for many
applications developers, the job of software cost/schedule
estimating is anything but easy. This is a long-standing
software engineering problem, with even estimation models with.
many years of good service being criticized for making errors
of 100 percent or more [Ref 3]. In fact, some recommend
collecting your own statistics for several project done using
your own programming support environment rather than using the
factors in the models [Ref 41. Published model factors are
based on data from hundreds of projects, but if your
environment is significantly different than the industry norm
then your responsiveness to these factors may indeed be unique.

1ss

.EAL-:"M_~2 -A PRO3LFI4 STUDY 10/9/87

[Ref i] B. Zoehm, "Software Engineering Economics", Prentice-
Hall, Enaglewood Cliffs, NJ, 1981

(Ref 2J R. W. Jensen, "Projected Productivity Impact of Near-
Term Ada Use in Software System Development, "Hughes Aircraft
Co., Fullerton, CA 1985

(Ref 3] C. enere:, "An Empirical Validation of Software Cost
EZZ i:.a fc dsl " I Z _nun icat iors uf :he ACM, May 19 37

Ref 4 D 4 is, "'Maasuring the Programmer's Productivity",
En;gineering .anaer, £ 'zruary 35

10. 23. i Riskt

The inability to accurately estimate the cost/schedule
rezuir~ae~nen of an embedded Ada application significantly
increases 7-'e technical risk that the job may never be finished
at all. This occurs when the job is grossly underbid, even in
a cost-p;lus environment (in fixed-price, the job will probably
be abozted as soon as the problem is realized).

The first response of most developers to an underbid job is to
respond in ways that at least offer a possibility of
maintaining schedule commitments. This may include
subcontracting modules, hiring job-shoppers to work in-house,
and z:ying to add more hours from the dedicated project staff
(through hiring and overtime).

Doing an cr all of these =tings makes project communication
ery difficult. In the absence of a strongly disciplined
eve opmenc methodology which all but forces this

commurication, it probably just won't happen. Unfortunately,
anything that has the appearance of a non-crisis task tends to
get buried in the panic environment of a badly underbid
project, ind methodoLogy requirements aze definitely non-
cri si.

Without good communication the chances of a complex project
ever completing are not good. If it does complete, it will
probably need an "update" immediately, where update is a
euphemism for "start over and do it right this time. "

10. 23. 2 Personnel R sources

The inabili-t' to estimate cost/schedule requirements accurately
will impact personnel resources first. Sonicraft, working on
the MEECN project, found just after the Preliminary Design
Review a te staff needed to quadruple to meet the Critical
-esign .eview date. A combination of temporary help (job-
shoppers), hiring and heavy overtime for six months brought in
the detail design acceptably close to the original date. While
this preve.nted a quick cancellation of the job, it by no means

2~86

REAL-TIME ADA PROBLEM STUDY 10/9/87

solved the staffing problem, which continued in one form or
another for two more years, mostly due to the inability to
forecast accurately.

10. 23. 3 Facilities

Closely related to cost/schedule forecasts are the facilities
needed to support the development staff. Underestimating the
staff needs can be partially compensated by adding facilities
that boost productivity, and many companies use this tactic
(along with others in parallel). The reason that this is a
problem is that the productivity gains rarely justify the cost
of such emergency purchases, and facility work on other
projects with higher savings must be postponed.

If forecasts are really far off (and that is not at all
uncommon), the added staff may find present facilities
inadequate. Contention for available host computer time, for
breadboard test time, and even for open host computer terminals
may slow down the project to the point where the added staff
has little effect.

10. 23. 4 Customer Relations

The inaccuracy of Ada cost/schedule estimations can be counted
on to erode whatever good relations were previously enjoyed
with the customer. No customer likes dealing with a contractor
who regularly produces unpleasant surprises affecting the cost,
the delivery date, and (when desperate) the specifications of
the delivered system.

10. 23. 5 Stability

The inability to estimate Ada cost and schedule leads to many
short-term responses which attempt to minimize schedule
slippage. As schedules are seen to start slipping anyway, and
as costs start to climb alarmingly, any good manager will look
to the only relief in sight: the specifications.

In any system there are "nice-to-have" functions which become
the focus of intense negotiations when a project is in trouble.
Since the contracting agency doesn't want to see the project
fail, this usually results in some contract reinterpretations
or modifications that give some relief to the contractor.

When it happens, the unfortunate result of this is an
instability of the specifications that affects not only the two
parties directly involved but also many support organizations
and, eventually, the using and maintaining organizations.

S 87

10.2 A_ SCiIWU DZVL1ENT METSODOLOGY

One off t ; .not ort Z eaztur:es z ! Ada is that it encourages
the use of: modan so-ftwaza engineering, development practices
(Pro', 'em 211. These practices can best be exploited when they,
are packaged within a good development methodology. The lack of
an estalbislied Ada developmnent izthcdoloqy can be a problem in
that snai.rs ::s ie 4n one m.ethodology are less mobile if
otha: '~~~ ' 7ivan wi.-n in same parent crganization)
us2 ~. ~ n niua to thej- Lack of

:z~rs rozlir.'211 since an important
~ a: ~ ce ~ ~ mthooloy trining.

T h I : , a t~ ,r a is a lack of good Ada
m e z' I C w S. _n I t ar-a two very good ones, Object
Orien-a- _--s 'g (0.'D) and PAA-iLA (T.M/ George Cherry). One of
the-a 0 iz -aining both popularity and respect very

rat lieh-ild back now by limitations
de so -_ .a iood long-zer.- potantial also.

Coz --Y- zc' he :eriethat probl~em definition is
* Is" a e a13n e r c oQOD onts.01

c cane z z . h- cn~ tohie z ~g n -r w ii t his t a sk b y
strit~n~aw~.v much of the s*yntzctic material that adds little

to ti4s task. :: does this by defining the Object as an Ada
packace oz :ask, which is a higher level v~iew than the module

of Yo0u :-!a n iAa 1. This has lad some to proclaim OOD as being
toe '--- O O 0 zzz 'technical fads' now available to

z:Zrs-na z ?r c iiz 7 ~ e 7] But it also causes
.7 ~ ~:c:-.z zof; liwmit~d when it comes to

e-n': a: . 1. 2.- .. S'S::as _'X cpera-.-cn I.Ref 1].

PAM-ZA, , .'i ozXc-'e~r hand, i. berst at describing the dynamism
o' A ia vs ', .iz -h, -,ist zzocess-flow methodology

-aapza :ao -.e Ada syntax [Ref 1), using easy to
laarn ~.citechni:;uas to input the design information that

~::og.anarata =.oda automatically. This labor-saving
sten a-c 17-s .getproblam. right now, however, since it
genera- an A dr zas , for every 'a ingle- thread" (no children)
cZOCZZ-- [a II. WJizh our A" Aa compilars the overhead due to

czrt~~- wachig s zo igh c allow free use of tasking.

So1c Z ' e 1-7C rszer d.-elopment in Ada, was forced
to rea,:c.-n ex:eniiaT.ely zo cut_ down the number of tasks in the
=ys-:e3:r : ,;.uoe it cu no: mzaet the design constzaints. Even
the --liv~rs desig3n, ith only ten tasks, was a problem

tcausi-a somne v.are nastzac as much as three levels deep, causing
~~ raz c':ad Z'r :nea -otl than in use. This is the
otherohj~;n~ --o L : . laads to deeply-nested structures

a zn 2:h -- z o 'I mi t at ion s to th - us e o f PAMELA
are ncAzszarily _I-jg-lasting ones. Khen Ada compilers become

:.an d~o very zalpid context s1.4itches Lpern-aps In

REAL-TIME ADA PROBLEM STUDY 10/9/87

conjunction with underlying microprocessors that have richer
instruction sets) and that maintain a single task stack for the
parent task and all direct descendants (to avoid context
switches among them), PAMELA may become much more widely used.

As a final note, there are some software organizations that
service customers outside the Department of Defense and thus
may need to use languages other than Ada on some projects.
Sonicraft, for example, is currently involved in the FAA's
Airport Modernization Program, and was specifically directed to
use the same language as the Principal Contractor, which
happened to be *C. * Since one of the main goals of a
functional software organization is the balancing of labor
resources between on-going and planned projects, the use of a
non-language-specific methodology was preferred. This allowed
programmers to be moved between the two major projects to
satisfy special project needs or to further individual career
goals. Had Sonicraft faced major retraining costs, because the
methodology was changed as well as the language, such moves
would have been far less frequent.

(Ref 11 S.Soyd,*Ada Methods: Object-Oriented Design & PAMELA',
SIGAda, Nov 86

[Ref 2] F.P.Brooks, "No Silver Bullet", IEEE Computer, Apr 87

10.24.1 Method Type

The lack of an established Ada software development methodology
makes it harder to decide which one to use on a specific
project. There had been a similar problem with software written
in other languages until the Yourdan methodology of Structured
Analysis and Structured Design "became pervasive within the
software engineering community" [Ref]. The dangers inherent in
picking a methodology that turns out to be off the mainstream
of the community include:

* Extensive retraining will be needed for new hires, who
will be unlikely to know your methodology

* Communication with other projects in Ada will be
crippled because you will probably use terms like"module" to mean something different than they might
define them to mean

* Performance may be hard to relate to industry norms
because you might be measuring different things within
your methodology, or you may have an inappropriate set
of tools to measure what others do

[Ref] S.F.Watson,"Ada Modules", Ada Letters, vii. 4-79, 1987
10. 24.2 Personnel Resoures

389

.A:-,I4. ADA PROBLEM STUDY 10/9/87

The lack of an established Ada software development methodology
makes tha Ada designers less mobile between projects or
organizations. When extensive methodology training is required
to introduce new members to a team, the project leaders tend to
exhaust oaner possibilities first, such as massive overtime.

10.24.3 Facilities

Mathoolovjies cand to have standard tools and facilities that
ma' 1 :2.: u ._ " 'icient. If a standard Ada methodology
wee co:a:e, -o tnaz managers knew that any investment in
-hese cools would also pay off for future projects, they would
be.o a.r ":il-i o b y them.

This willingness to purchase the tools would help create a mass
market for tham, driving down the price and improving both the
quality and the features as more vendors were attracted to
serve the burgeoning market.

l0. 24. 4 Crot

The cost. associated with the lack of an established Ada
me-hodolocy aze rhose which are incurred when someone already
trained in one methodology must be retrained in another. These
costs would be reduced if most projects used the same or very
similar methodologies.

10. 2,. 5 Schedule

T 3 -ch 1 3 1 - -,-hi ch occur due to the lack of an
es -a niad da m: -hodolog y are those incurred due to the

nzzh, o-: zna c.rainig time when adding new staff. Instead of
ze:.ng zzoductive in a 4.w weeks, when the basics of Ada syntax

ton h asic tools on the host computer have been learned, the
new desig.a. requires additional weeks or months to get
coirfortable with the methodology being used.

An established methodology would reduce these delays by
ha-- J 4 . y that the new designer already knows

the methodology being used.

2 .2 4. A Zzz-,ation

The usual problems in estimating a software job are compounded
if there is no established Ada methodology. Since planning
mistakes are usually rectified by adding new staff (assuming
the project duration is long enough to tolerate this), anything
which increases t he cosz of adding staff will have a leveraging
edfect on cost estimatas, making even relatively small errors
.tore 3zensiv . to cor:ect (both in cost and in schedule

10. 24.7 Customer Relations

gil o

REAL-TIME ADA PROBLEM STUDY 10/9/87

Customer relations can suffer from the lack of an established
Ada design methodology in two ways. First, and most important,
the customer may be unfamiliar with the methodology being
employed. This hurts the needed communications since output and
progress may be measured in ways the customer does not fully
understand. If the customer has monitored other projects that
have used the contractor methodology, the relationship becomes
more comfortable.

The second problem is that it becomes a little more expensive
to do things if there is no established methodology. Project
cost and schedule can increase [Problem #24 Cost, Schedule],
and it also takes more effort for the customer to learn
effective ways to monitor the work.

10. 24. 8 Stability

In extreme cases a project can be subjected to massive cost and
schedule overruns. If the product is deemed valuable enough,
the project may be allowed to continue, which then makes the
lack of a standard Ada design methodology important. By raising
the cost of training the additional staff needed to recover,
plus extending the time needed for them to become trained
enouch to contribute, this problem could force both the
customer and the contractor to look for ways to down-scope the
product specifications.

The resulting instability in what the product is expected to be
will cause a whole new set of problems.

B91

FZAL-_ :_Y Z ADA P.RC34L.E4 STUDY 10/9/87

.O. 2~LACZ OF ESTABLISHE ADA SOFTWARE STANDARDS AND
GUIDELINE~S

So-icraft is among the (;rowing number of software development6
organizations t.hat measures the productivity of each designer
and manace:, rewarding them primarily on this measured
productivity and the quality of their software products. This
ha.s teen -.):oven ovar and over to be a sound practice since we

ia';-1. d.:; iff-arenca in producivt !;etween the
ae r, c :nie %;st prcy:aammes to be ccasistently about a

faz:of ::-n. 3esidez keeping turnover of the best people very
-w in. oivas togy encourages the worst to either
~i:~lyimprove or tofind another line of w~ork.

The reason all organizations don't use this practice is that it
takes a considezrable am-,ount of effort to make i4: work right-.
The measuzancs we use aze, by now, quite standard (operational
Iines of cod e and houzs charged to the project), with good

~z~availabrle :o automate their collection. The hardest part,
.s zo Tst_7r'-sh standards that can be anchored in some facts,

a~ he ~biuitus national averagea productivity, or a
'Caselins formed 4:rorr several similar proJects done in our
envi~ronmnent (Refl.

-ee is the Problem that Ada introduces. Because of the
ziffcu.iesin escimat-'ng the number of lines of code or labor
._;z3hat a Zroject should take [Problem §Y23j, the credibility

ro) tl,;e stan-dard is jeopardized. As long as the standards were
tae --n a A-cccnn.Lishments of others, they were accepted

z nge. 2 fte mutbe br-sed on theory because
A -a haS ad~ of real data, their motivati.onal value is

~z-a:~yeducla.2.

Czzpou rd ing the problem is the observation [Problem #23] that
:.he productivity of Ada programmers is likely to start out

!_-.'--a-n wi:,'u other languages, then rapidly improve, ending
,u, witn hioaher oroductivi-y than other common languages. This
11.afrees nroductivity daza collection far more difficult, since it
iis continually changing over a period of two or three years. It
also ;a sthea data -from other organizations more suspect since
.t Is 'ia-d to tall 3xactly where on the learning curve they

migh: 6e pz-ng

'Re!] H' Dais "Measuring the Programmer's Productivity",
.. ~lg~~a~ngManager, February 85

:z.2~ 2 2rsotr~e Rescurces

--he Lacz -a stablishad Ada productivity standards can cause.
.. ighaz turnovar among the most -productive people. Thpse people
can:. na lz~: ~ewarded as well wthen the standards are
uncertain or poorly defined. Similarly, the least productive
;ec:-Le will ble less inclined to improve, preferring to blame
their troub'-les on the' questionable measurement standards.

REAL-TIME ADA PROBLEM STUDY 10/9/87

The net effect of these two tendencies is an overall lowering
of the project team productivity. This strains the available
personnel resources in support of the project, which, because
of other problems (such as Problem #21] may be difficult to
replenish.

This effect can be startling in its magnitude when seen in
action on two apparently similar projects, the main difference
being the use or non-use of productivity standards. It is
possible to see the project using the standards operate at
double the national average productivity while the non-user
operates at half.

10.25.2 Cost

Due to the combined effects of losing. more of the most
productive designers and being saddled with non-improving poor
performers [Problem #25 Definition], the unavailability of
established Ada productivity standards can drive up project
costs very substantially.

Disturbingly, the process doesn't take long once it is set in
motion. A project can get a reputation as being 'a bunch of
losers" after only a year or two, which will hasten the
departure of the best people still remaining.

10.25.3 Schedule

The combination of rising amounts of labor needed to do each
task [Problem #25 Cost] plus the difficulty of replenishing the
available labor base in support of the project [Problem #21
Personnel Resources] can lead to missed deadlines.

10.25.4 Estiaation

The lack of established Ada productivity standards can increase
the turnover of the most productive designers on the team
[Problem #25 Cost]. Since these are the people who get most of
the work done, the increased risk of losing them makes the
estimation process even more difficult.

The reverse problem also occurs. The lack of established Ada
productivity standards can decrease the rate of improvement or
elimination of the least productive designers. Carrying a poor
performer not only increases cost but makes it more difficult
to add a more productive person to the team. This also makes
the process of estimation more difficult by weakening one of
the main sources of management control: when things start going
poorly they can deteriorate very quickly, and a rapidly-
changing process is almost impossible to estimate.

93

REAL-TIME ADA PROBLEM STUDY 10/9/87

10. 26 PRODUCTIVITT IMPACTS OF ADA

Of the preceding 25 problems, 18 have been shown to influence
the cost of an embedded Ada system. On the other hand it is
often true that problem identif.ication is the hardest part:
once you know what the problem is, the solution is sometimes
obvious. This report is therefore not as discouraging as it may
seem at first reading.

In the case of Ada, there are some long-term cost benefits that
are the ultimate reason-it has been adopted as the standard
language for Department of Defense embedded mission-critical
software (Ref 1]. And other languages are not problem-free:
MGEN Smith reported that 70 to 80 percent of the late Air Force
projects are having software problems [Ref. 21. At the same
conference MGEN Salisbury reported another need for a standard
language like Ada that can handle a wide variety of
applications: The Standard Army Management Information System
(STAMIS) had grown to 750 systems, now reduced to 110. Using
Ada is, expected to cut it to 37 programs.

The one area which is probably the biggest source of Ada
productivity problems is the speed of the compiler. Compilation
speeds have been steadily dropping for VAX-host, Intel-target
compilers. Sonicraft has seen a times ten improvement here in
the last two years, with another big improvement reported to be
in the offing for a compiler to be validated in September 1987
[Ref 31.

For the present, however, Ada does have serious productivity
impacts which can price it out of the market for many projects
IF YOU LOOK AT DEVELOPMENT COSTS ONLY.

(Ref 11 Department of Defense Directive, 3405.2, Subject: Use
of Ada in Weapon Systems, Mar 87

[Ref 21 Policy Committee Reports From Armed Services, SIG Ada,
Nov 86

(Ref 31 L. Silverthorn, DDC-I, Phoenix, AZ

10. 26. 1 Debugger

The debugger currently available for the Intel microprocessors
was derived from the Intel Pascal debugger and cannot follow
the context switches of Ada tasks (since nothing comparable
exists in Pascal).

Debugging within the scope of a single task does not sound
overly restrictive, but many of the most difficult code
problems involve interrupts whose handlers are implemented as
tasks. This limitation can seriously impact productivity during
the Code and Test Phase and the CSC Test Phase.

94

REAL-TIME ADA PROBLEM STUDY 10/9/87

10. 26. 2 PDL Processor

There have been a number of improvements since Sonicraft wrote
its original MEECN Project CPCI Product Specification (CS) in
1983 and early 1984. The PDL processor used was incapable of
compiling the Program Design Language (PDL), which caused
severe rework problems that could have been largely avoided.

The current PDL processors are still being actively developed,
and the discussion continues as to exactly what functions a PDL
processor should support. When standardization occurs the
productivity on Ada work will rise somewhat, although this is
no longer the problem it once was.

The directive mandating the use of Ada [Ref] does encourage the
use of compilable PDL, which is the right way to go in
Sonicraft's experience.

(Ref] DoD Directive 3405.2, *Use of Ada in Weapon Systems, "

March 87

10. 26.3 Compiler

The Ada compiler, despite tremendous improvements in the past
few years [Problem #26 Definition], is still the source of much
of the lost productivity faced by an embedded Ada software
developer. When you can read about a OC" compiler that is
advertised (Ref] to run about a hundred times as fast on a
plain-vanilla Personal Computer clone as the best Ada compiler
can run on a VAX, you know there is room for improvement here.
To be fair, the Ada compiler does much more than any "C'
compiler, but the difference should not be a factor of a ten tohundred when far less computer resources are available to it.
[Ref] Turbo "Co advertisements for 10,000 lines of code per

minute compile speed

10.26. 4 Personnel Resources

With personnel resources already stretched thin by the lack of
experienced Ada programmers -[Problem #21), the poor
productivity of Ada tools can really hurt a project, especially
if it comes as a surprise.

10. 26. 5 Facilities

At one point in the MEECN Project development, Sonicraft
seriously considered the purchase of a "RAM Disk" to improve
the then unacceptably slow speeds which were available for VAX-
host, Intel-target cross- compilations. Fortunately an
appreciably-faster compiler was released before this commitment
was made.

39

REAL-TIME ADA PROBLEM STUDY 10/9/87

For some projects, in other circumstances, decisions to upgrade
facilities to compensate for poor Ada tool productivities may
be required.

10.26.6 Cost

Cost is directly dependent on productivity, so low productivity
Ada tools will increase Ada software development costs.

10.26.7 Schedule

Schedule problems could arise from the poor productivity of Ada
tools only if they are unanticipated. This is very possible,
since the benchmarking software for these tools is still
inadequate [Problem #171.

10. 26. 8 Estimation

The low productivity of Ada tools makes the estimating task
more d'ifficult simply because a larger effort is required. When
the project staff goes up, the interactions internal to the
staff as well as those with elements outside the project staff
get more complex.

A more serious effect on estimating, however, is the
uncertainty as to exactly how -roductive the Ada tools are
[Problem $17].

96

REAL-TIME ADA PROBLEM STUDY 10/9/87

10. 27 IMPACT OF CONSTRAINT CHECKING ON SYSTEM PERFORMANCE

Ada provides the capability, within the language, to perform
constraint checking. Constraint checking provides the Ada
application developer with a means to determine whether a
variable was assigned a value at runtime that is outside of its
defined range. When this event occurs, the exception
CONSTRAINTERROR is raised to signal the problem. "However,
the event that the requirements for constraint checking become
too severe, Ada provides a SUPPRESS pragma to disable this
feature.

.

10.27.1 Efficiency

The inclusion of constraint checking can adversely affect the
efficiency of an Ada application. The overhead associated with
performing constraint checking can cause thee application to
use more CPU resources.

10.27.2 System Sizing

The constraint checking code resides in memory as part of the
runtime environment. Even if the SUPPRESS pragma is used to
disable constraint checking, the unnecessary code still resides
in the runtime environment. If constraint che-king is not
desired for an application, the unnecessary cou- be removed
from the runtime.

10.27.3 System Timing

An application which performs a large amount of constraint
checking could experience a significant increase in system
timing overhead. This overhead is in addition to the normal
range checking that is performed by a developer within the
application program itself.

S 97

REAL-TIME ADA PROBLEM STUDY 10/9/87

10.28 INABILITY TO ASSIGN DYNAMIC TASK PRIORITIES

wAda does support a capability for dynamically altering the

priority of a currently running task. The value for the pragma
PRIORITY is static and therefore cannot be changed at runtime.
Implementations may support an alternate set of priorities that
control tasking in the case where the Ada PRIORITY is identical
or undefined. ... This allows an implementation-defined
subpriority, which may be dynamic, to control the scheduling.
This capability is not supported by many implementations, and a
standard does not exist to help provide commonality.

10. 28. 1 Complexity

Because of the inability to assign dynamic task priorities
within the Ada language, the developer must implement this
feature if it is desired. The developer can implement a
limited form of dynamic priorities with considerable effort and
at the cost of a considerable increase in the complexity of the
application.

10. 2 .2 Portability

To implement the assignment of dynamic task priorities, the
applications developer must have knowledge of the dynamic
defined subpriority as implemented in the version of the Ada
compiler that is being used. Using this knowledge, however,
reduces the portability of the Ada application by building in
implementation dependencies.

98

REAL-TIME ADA PROBLEM STUDY 20/9/87

10. 29 INABILITY TO PERFORM PARALLEL PROCESSING

10. 29. 1 Efficiency

For those operations which lend themselves to parallel
processing, the efficiency with these operations are performed
could be greatly improved through the use of parallel
processing. An example of this type of application would be
matrix arithmetic operations.

10. 29. 2 Complexity

The implementation of parallel processing-oriented operationz
in a non-parallel processing-oriented environment can cause a
significant increase in system complexity. This could involve
the use of special-purpose hardware and software to perform the
parallel processing operations.

10. 29. 3 Portability

"he use of special-purpose hardware and software to implement
parallel processing operations can reduce the portability of
the application.

:99

REAL-TIME ADA PROBLEM STUDY 10/9/87

20. 30 LACE OF SUPPORT FOR LOW LEVEL OPERATIONS

'Ada does not provide a mechanism to control the processor
state (including interrupt masks required for critical
sections). Although Ada provides a mechanism to directly
manipulate memory mapped hardware, no capability exists within
the language to access internal processor registers. Such a
mechanism would be difficult to standardize.0

For example, "..changing the processor state needs to be done
in conjunction with the runtime. Since stacks used for
different states are often separate, simply changing state will
result in an error condition. Also, subsequent calls to the
runtime (possibly due to exceptions) are likely to cause
unpredictable results."

Another example is that ".. there is frequently a need to enable
and disable interrupts which is performed by setting or
clearing interrupt masks. It is easy for a programmer to write
an assembly language routine to manipulate an interrupt mask
and call this routine from an Ada program. The problem occurs
because the assembly language is not working in conjunction
with the runtime environment provided. "

10. 30. 1 Complexity

To perform low level operations within an Ada application, the
applications developer must try to account for for any possible
impacts to the RSL. The implementation of these operations can
significantly increase the complexity of the application.

10. 30. 2 Reliability

The overall reliability of an Ada application can be affected
by the potentially unpredictable results that can occur when
low level operations are not implemented in conjunction with
the RSL.

10.30. 3 Correctness

The unpredictable results that can occur when low level
operationa are implemented can adversely impact system
correctness by making it difficult to ensure that the system
performs as specified and required.

'l oo

REAL-TIME ADA PROBLEM STUDY 10/9/87

10.31 INABILITY TO PERFORM TASK RESTART

Applications which require that a separate thread of control
(task) be restarted at the beginning after being interrupted
part way through have difficulty mapping this requirement to
Ada.

"Certain applications do have a need to be able to have
multiple tasks, where one task might be pre-empted by a higher
priority task, and the result of the pre-emption is to make the
continuation of the Rre-empted task meaningless. '

*The standard Ada solution to this problem is to ABORT the
pre-empted task, and then re-activate a new task. This creates
a few undesirable side effects, not the least of which is
likely to be unacceptable performance degradation. *

10.31.1 Efficiency

Performing a task restart by aborting the pre-empted task and
re-activating a new task can adversely affect efficiency by
causing performance degradation. The performance degradation
results from the overhead associated with task activation and
deactivation.

10. 31. 2 Reliability

The overall reliability of an Ada application can be affected
by the potentially unpredictable resultz that can occur when
aborting a task and restarting a new task.

In the book "Software Engineering With Ada", Grady Booch says:
"This (aborting a task] has the effect of prematurely killing a
task and all of its dependent tasks. This is a rather
ungraceful means of task termination and should be done only
when all other means fail.

The task abort and restart are also somewhat non-
deterministic; a task is ACTUALLY started or stopped at some
time after the request is made. This time interval depends on
the implementation of tasking in the particular Ada environment
being used.

10. 31. 3 Correctness

The unpredictable results that can occur when tasks are
aborted and restarted can adversely impact system correctness
by making it difficult to ensure that the system performs as
specified and required.

101

REAL-TIME ADA PROBLEM STUDY 10/9/87

10. 32 INABILITY TO PERFORM CYCLIC SCHEDULING IN ADA

Cyclic scheduling provides the capability to perform periodic
processing by running a number of processes on-a scheduled time
basis. "The Ada language can support some degree of periodic
processing by using the DELAY statement. Although some
implementations provide a reasonable mechanism for this, the
DELAY statement is not always adequate for this application.'

"The problem (with the DELAY statement] is that the duration
value is a delay from the current time, not a fixed interval.
Therefore, the clock must be read and the cycle computed in the
simpleexpression allowed for the DELAY statement. However,
there is no way to ensure that an interrupt (and possibly a
higher priority task) is not executed between the time the
clock is read in the simple-expression and when the delay
duration is actually interpreted by the runtime [program]. "

10. 32. 1 Correctness

The non-determinism of the Ada DELAY statement in the
implementation of a cyclic scheduler has an adverse impact on
correctness. This is because the applications developer cannot
ensure that the period that is specified for running a process
(timeslicing) is actually the amount of time that the process
runs.

10.32. 2 Complexity

The difficulty in trying to implement an accurate cyclic in Ada
using the DELAY statement can cause a significant increase in
the complexity of the Ada application which contains the
scheduler.

$ 102

REAL-TIME ADA PROBLEM STUDY 10/9/87

10.33 LACE OF FLOATING POINT COPROCESSOR SUPPORT

"A floating point coprocessor is a high performance numerics
processing element that extends the main processor architecture
by adding significant numeric capabilities and direct support
for floating point, extended integer, and BCD data types. The
presence of a floating point chip would increase performance in
a real-time embedded application that required floating point
operations to be performed."

*There is a lack of a standard for floating point coprocessor
support in Ada. Some compilers require a floating point chip
to perform floating point processing; other compilers cannot
utilize the chip if it is present. "

10.33.1 Efficiency

The lack of a floating point coprocessor means that more of the
system resources (CPU time, memory) will be required to perform
f1dating point operations and to provide support for intrinsic
functions such as sine and cosine.

10. 33.2 Correctness

The lack of a standard for use of a floating point coprocessor
means that some Ada compilers will require the presence of a
coprocessor and some will not. Depending on the manner in
which the floating point coprocessor is used and the way in
which floating point is implemented by a particular compiler,
an application could provide different answers for the result
of a floating point operation.

103

REAL-TIME ADA PROBLEL4 STUDY 10/9/87

10.34 INABILITY TO RECOyER FROM CPU FAULTS IN ADA

OCPU fault tolerance is the built-in capability of a system to
provide continued correct execution in the presence of a
limited number of hardware or software faults. Highly reliable
systems require that the software continue-to operate in the
presence of CPO faults. "

"Although this may seem impossible, careful analysis indicates
that many faults are momentary and do not result in permanent
interruption of processing capability. However, it is
essential that the program be able to recover from such faults
and continue execution from the last check point. Ada does not
directly support the ability to recover from such CPU faults.'

10.34. 1 Reliability

"Although it is possible for an Ada program to checkpoint its
data, due to the complexity of program elaboration, it is
diffibult for an off- the-sbelf runtime to roll back and
recover from a CPU reset. " Thus, the unpredictability of the
CPU fault recovery process can significantly reduce the overall
reliability of the system.

10. 34. 2 Correctness

The ability to dynamically create objects in Ada at runtime
(data, tasks, etc...) and the variety of dynamic objects that
are created by Ada during program operation make it very
difficult to perform the reconstruction of t.he runtime
environment that is required to properly (correctly) recover
from a CPU fault and continue execution from the last check
point.

104

REAL-TIME ADA PROBLEM STUDY 10/9/87

10. 35 IMPACT OF ADA COMPILER VALIDATION ISSUES

"Validation is the process of checking the conformity of an Ada
compiler to the Ada programming language [as specified in MIL-
STD- 1815A] and of issuing certificates indicating compliance
of those compilers that have been successfully tested. it
should be emphasized that the intent is only to measure
conformance with the standard. Any validated compiler may
still have bugs and poor performance, since performance is not
being measured by the validation tests. "

"To obtain a validation certificate, a compiler implementor
must exercise an Ada Compiler Validation Capability (ACVC) test
suite. The current level is Version 1. 9 and it contains a
series of over 2500 tests designed to check a compiler's
conformance to the DoD's Ada language standard, ANSI MIL-STD-
1815A-1983.

"Vith the initial validation phase completed for most
compilers, the compiler implementors are [finally] shifting
their emphasis to concentrate on improving the efficiency of
the generated code (code optimization) and providing more user
configurability of the runtime environment.'

10.35.1 Efficiency

The efficiency of the code generated by the current Ada
compilers has not been very good because the emphasis has been
on passing the ACVC tests to achieve validation and not on
achieving the performance levels to support the development of
real-time embedded systems.

10. 35. 2 Portability

As the compiler vendors shift their emphasis to improvement of
compiler performance, it expected that one approach will be to
address more of the machine dependencies and implementation
details. However, taking advantage of these machine
dependencies and implementation details will reduce the
portability of the code produced by the Ada compilers.

10.35.3 Stability

The compiler validation process can affect project stability.
One issue has "appeared involving what constitutes
anmaintenance"" of a compiler and how much of it [the compiler]
can undergo change and still retain validation status.

"Also, since Ada validation status is only retained for one
year after validation, concerns have been expressed for
programs that do not want to change the version of their
compiler after they begin testing. New policies have been
developed to support baselining a compiler with respect to a
project, and deriving validation status for similarly

105

REAL-TI1ME ADA PROBLEM STUDY 10/9/87

configured machines.0

106

REAL-TIME ADA PROBLEM STUDY 10/9/87

10. 36 INABILITY TO PERFORM ASYNCHRONOOS TASK

"The Ada rendezvous model uses a synchronous mechanism to
communicate between tasks. Many applications require that a
signaling task not be delayed until the signaled task is ready
to accept the signal. The mechanism used to communicate
between tasks in the Ada rendezvous model is that both tasks
must be synchronized together before any data or control
information can be transferred.

"The Ada solution to this issue is to place an intermediate
task between the signaling task and the waiting task. This
intermediate task would always be ready for a rendezvous and
would effectively buffer the transaction to provide
asynchronous communications. The impact is to create an
additional (logical) context switch.

20. 36. 1 Efficiency

The 'overall system efficiency is reduced due to time wasted
because a signaling task is delayed until the signaled task is
ready to accept the signal.

if asynchronous task communications are implemented through the
use of an intermediate task, the additional context switch that
is required (due to the inclusion of the intermediate task) can
significantly increase the overhead associated with this
activity.

10.36.2 Complexity

Any optimization that is required to compensate for the
possibly extensive waiting time for a signaled task to accept
the signal could increase the overall complexity of the system.

_B 107

REAL-TIME ADA PROBLEM STUDY 10/9/87

10. 37 LACK OF IMPLEMENTATION OF ThE IMPLEMENTATION

"Many of the features in Chapter 13 [of the Ada Reference

Manual] are not implemented in current commercially available
compilers today. Chapter 13 of the Reference Manual for the
Ada Programming Language is titled, ""Representation Clauses
and Implementation- Dependent Features"". These features are
optional and therefore a compiler can have the status of
" validated"" without any of these features implemented.
However, many people feel that Chapter 13 is required for. real-
time embedded applications. "

The features addressed in Chapter 13 of the Ada Reference
Manual allow an Ada application developer to perform systems
programming tasks by providing a physical representation of the
underlying machine. These features include:

* Representation Clauses

* Length Clauses

* Enumeration Representation Clauses

* Record Representation Clauses

* Address Clauses

* Address Clauses For Interrupts

* Change Of .tepresentation

* The Package SYSTEM

* System-Dependent Named Numbers

* Representation Attributes

* Representation Attributes Of Real Types

* Machine Code Insertions

* Interface To Other Languages

10. 37. 1 Complexity

The use of an Ada compiler without the Chapter 13 features
implemented increases the complexity of the Ada application
oecause the developer must build these interfaces to the
underlying machine. These interfaces must also be built to
operate in conjunction with the runtime environment.

log

§m 108l

REAL-TIME ADA PROBLEM STUDY 10/9/87

10.37.2 Non-AMa Software

The requirement for the Ada applications developers to build
interfaces to the underlying machine causes them to use a
higher amount of non-Ada software.

Maintainability -The additional use of non-Ada software and the
required interfaces to the runtime environment tend to decrease
the overall maintainability of the system.

lo9

